DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label nmr. Show all posts
Showing posts with label nmr. Show all posts

Friday 29 December 2017

Stable and reusable nanoscale Fe2O3-catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides


Green Chem., 2018, Advance Article
DOI: 10.1039/C7GC02627G, Paper
Kathiravan Murugesan, Thirusangumurugan Senthamarai, Manzar Sohail, Muhammad Sharif, Narayana V. Kalevaru, Rajenahally V. Jagadeesh
Nanoscale Fe2O3-catalyzed environmentally benign synthesis of nitriles and amides has been performed from easily accessible aldehydes and ammonia using O2.

Stable and reusable nanoscale Fe2O3-catalyzed aerobic oxidation process for the selective synthesis of nitriles and primary amides

 
Author affiliations

Abstract

The sustainable introduction of nitrogen moieties in the form of nitrile or amide groups in functionalized molecules is of fundamental interest because nitrogen-containing motifs are found in a large number of life science molecules, natural products and materials. Hence, the synthesis and functionalization of nitriles and amides from easily available starting materials using cost-effective catalysts and green reagents is highly desired. In this regard, herein we report the nanoscale iron oxide-catalyzed environmentally benign synthesis of nitriles and primary amides from aldehydes and aqueous ammonia in the presence of 1 bar O2 or air. Under mild reaction conditions, this iron-catalyzed aerobic oxidation process proceeds to synthesise functionalized and structurally diverse aromatic, aliphatic and heterocyclic nitriles. Additionally, applying this iron-based protocol, primary amides have also been prepared in a water medium.
1H NMR (300 MHz, Chloroform-d) δ 7.17 – 6.96 (m, 2H), 6.93 – 6.70 (m, 1H), 4.33 – 4.11 (m, 4H). 13C NMR (75 MHz, Chloroform-d) δ 147.75 , 143.80 , 125.87 , 121.21 , 118.91 , 118.25 , 104.38 , 64.59 , 64.12 . Off white solid
STR1 STR2 str3
STR1
cas 19102-07-9
  • 1,4-Benzodioxan-6-carbonitrile (8CI)
  • 2,3-Dihydro-1,4-benzodioxin-6-carbonitrile
  • 1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)nitrile

MP
Melting Point, °C  
105 - 106
Tetrahedron, 2015, vol. 71,  29, p. 4883 - 4887
NMR PREDICTS
1H NMR

STR1

13C NMR PREDICT
STR2

More................
Journal of the American Chemical Society, 2001, vol. 123, 49, p. 12202 - 12206
STR1
More.............
RSC Advances, 2013, vol. 3, 44, p. 22389 - 22396
STR1 STR2 str3
MORE........
Organic Letters, 2017, vol. 19,  12, p. 3095 - 3098
2,3-Dihydrobenzo[b][1,4]dioxine-6-carbonitrile (Scheme 1, 2n) According to the general procedure A, the reaction of 1n (0.20 mmol), zinc cyanide (2.0 equiv), PCyPh2 (0.20 equiv) and Pd(OAc)2 (0.05 equiv) in dioxane (0.25 M) for 16 h at 150 °C, afforded after work-up and chromatography the title compound in 75% yield (24.2 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.17-7.11 (m, 2H), 6.91 (d, J = 8.1 Hz, 1H), 4.32-4.31 (m, 2H), 4.30- 4.26 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 147.84, 143.91, 126.04, 121.37, 119.01, 118.37, 104.62, 64.71, 64.24.
STR1 STR2
//////////////

Thursday 28 December 2017

Sulfurative self-condensation of ketones and elemental sulfur: a three-component access to thiophenes catalyzed by aniline acid-base conjugate pairs


Green Chem., 2018, Advance Article
DOI: 10.1039/C7GC03437G, Communication
Thanh Binh Nguyen, Pascal Retailleau
An aniline/acid-catalyzed method for constructing thiophenes 2 from inexpensive ketones 1 and elemental sulfur is reported.

Sulfurative self-condensation of ketones and elemental sulfur: a three-component access to thiophenes catalyzed by aniline acid–base conjugate pairs

 
Author affiliations

Abstract

A sulfurative self-condensation method for constructing thiophenes 2 by a reaction between ketones 1 and elemental sulfur is reported. This reaction, which is catalyzed by anilines and their salts with strong acids, starts from readily available and inexpensive materials, and releases only water as a by-product.
STR1

2,4-Di-p-tolylthiophene (2b)2
2 M. Arisawa, T. Ichikawa, and M. Yamaguchi, Chem. Commun. 2015, 51, 8821
STR1
Eluent heptane:toluene 9:1. 190 mg, 72%.
1 H NMR (300 MHz, CDCl3) δ 7.60-7.54 (m, 5H), 7.34 (s, 1H), 7.27-7.23 (m, 4H), 2.42 (s, 6H).
13C NMR (75 MHz, CDCl3) δ 145.3, 143.3, 137.8, 137.2, 133.5, 131.9, 129.9, 129.8, 126.5, 126.0, 122.1, 118.9, 21.5, 21.5.
STR1 STR2
STR1
Binh Thanh Nguyen at French National Centre for Scientific Research

Binh Thanh Nguyen

CV Binh Nguyen

CNRS Research Associate CR1 ( ORCID , ResearchGate )
ICSN-CNRS Bât. 27
1, avenue de la Terrasse
91190 Gif-sur-Yvette France
thanh-binh.nguyen_at_cnrs.fr
+33 1 69 82 45 49
- Education and work experience2015: Habilitation to Direct Research (HDR)
2011 - present: CNRS research associate at ICSN - Paris-Saclay University
2009 - 2011: Post-doctoral Fellow at ICSN (Dr. Françoise Guéritte and Dr. Qian Wang)
2003 - 2006: Ph.D. student at the UCO2M Organic Synthesis Laboratory (University of Maine, Le Mans, France, Dr. Gilles Dujardin, Dr. Arnaud Martel, Professor Robert Dhal)
- Research Interests
Green chemistry (Atom, step and redox economic transformation), green synthetic tools: O2, S8, photochemistry, iron catalyst
Elemental sulfur as a synthetic tool (building block, oxidant, reductant, catalyst)
Iron-sulfur catalysts
Heterocycle synthesis
- Scientific Communications
47 publications
- Selected recent publications ( complete list )
[1] Adv. Synth. Catal. 2017 , 359 , 1106.
[2] Asian J. Org. Chem. 2017 , 6 , 477.
[3] Org. Lett. 2016 , 18 , 2177.
[4] Org. Process Res. Dev. 2016 , 20 , 319.
[5] Angew. Chem. Int. Ed. 2014 , 53 , 13808.
[6] J. Am. Chem. Soc. 2013 , 135 , 118.
///////////

Tuesday 19 December 2017

Benzyl (5-methylpyrazin-2-yl)carbamate

2-(Cbz-Amino)-5-methylpyrazine.png

2-(Cbz-Amino)-5-methylpyrazine

Molecular Formula:C13H13N3O2
Molecular Weight:243.266 g/mol
 
 
str1
Benzyl (5-methylpyrazin-2-yl)carbamate
CAS 1033418-57-3
Mp 191.4 °C.
IR 1719, 1567, 1353, 1226, 1054, 759, 744, 706 cm–1.
1H NMR (DMSO-d6, 500 MHz) 10.45 (br, 1H), 8.93 (s, 1H), 8.20 (s, 1H), 7.42–7.32 (m, 5H), 5.18 (s, 2H), 2.41 (s, 3H).
13C NMR (DMSO-d6, 125.7 MHz) 153.6, 147.7, 146.7, 141.7, 136.5, 134.3, 128.7 (2C), 128.4, 128.2 (2C), 66.5, 20.4.
HRMS elemental calculated for C13H14N3O2 (MH+): 244.1086; found: 244.1080.

NMR PREDICT
1H NMR
13 C NMR PREDICT
Use of a Curtius Rearrangement as Part of the Multikilogram Manufacture of a Pyrazine Building Block
 Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, United Kingdom
 Cyton Biosciences Ltd., 68 Macrae Road, Bristol, BS20 0DD, United Kingdom
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00340
 
 
 
MORE...............
 

A modular flow reactor for performing Curtius rearrangements as a continuous flow process

Abstract

The use of a mesofluidic flow reactor is described for performing Curtius rearrangement reactions of carboxylic acids in the presence of diphenylphosphoryl azide and trapping of the intermediate isocyanates with various nucleophiles.
Graphical abstract: A modular flow reactor for performing Curtius rearrangements as a continuous flow process
/////////////////////
O=C(OCc1ccccc1)Nc2cnc(C)cn2

Friday 8 December 2017

Ruthenium-Catalyzed Tandem C–H Fluoromethylation/Cyclization of N-Alkylhydrazones with CBr3F: Access to 4-Fluoropyrazoles

Figure
4-Fluoropyrazoles are accessible in a single step from readily available aldehyde-derived N-alkylhydrazones through double C–H fluoroalkylation with tribromofluoromethane (CBr3F). RuCl2(PPh3)3 has been proven to be the most efficient catalyst for this transformation when compared to a range of other Cu-, Pd-, or Fe-based catalyst systems.
Image result for Didier Bouyssi
Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, CNRS UMR 5246), F-69622 Villeurbanne, France
J. Org. Chem.201782 (6), pp 3311–3316
DOI: 10.1021/acs.joc.7b00085
Ruthenium-Catalyzed Tandem C–H Fluoromethylation/Cyclization of N-Alkylhydrazones with CF3BR: Access to 4-Fluoropyrazoles

The importance of fluorine-containing pyrazoles to the pharmaceutical and agrochemical industries has been steadily increasing in recent years. As a consequence, the development of methods suitable for the incorporation of fluorine or fluoroalkyl groups into the pyrazole ring continues to be the subject of intense research.
Predicated on their previous copper-catalyzed synthesis of 4-substituted pyrazoles, Bouyssi, Monteiro and their co-worker from the Institut de Chemie et Biochemie Moléculaires et Supramoléculaires reported a ruthenium-catalyzed synthesis of substituted-4-fluoropyrazoles ( J. Org. Chem. 2017823311). The requisite starting materials, aldehyde derived N,N-dialkylhydrazones, were readily synthesized. Tribromofluoromethane served as the source of fluorine.
The commercially available and inexpensive ruthenium complex, RuCl2(PPh3)3, was discovered to be a very effective catalyst for this transformation. Diglyme was the preferred solvent for the reaction. The reaction displayed good tolerance for a variety of functional groups, including cyano, ester, formyl, and halide.
In general, higher yields were obtained with electron-withdrawing substituents. This novel methodology affords substituted-4-fluoropyrazoles in good yields in one step from readily available starting materials.

                                                 2K

3-(Benzo[d][1,3]dioxol-5-yl)-4-fluoro-1-methyl-1H-pyrazole (2k)
Chromatography using ethyl acetate/cyclohexane (gradient elution 30:70 to 50:50) gave the title compound as a pale yellow solid (79 mg, 60%).
Mp = 82–85 °C.
1H NMR (400 MHz, CDCl3) δ 7.35–7.31 (m, 2H), 7.27 (d, J = 4.8 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 5.97 (s, 2H), 3.83 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 148.0, 147.2, 146.8 (d, J = 248.0 Hz), 136.7 (d, J = 6.2 Hz), 125.3 (d, J = 4.2 Hz), 119.8 (d, J = 4.7 Hz), 117.5 (d, J = 28.6 Hz), 108.6, 106.6 (d, J = 3.7 Hz), 101.1, 40.0 (s).
19F NMR (282 MHz, CDCl3) δ −178.2 (s). HRMS (ESI): Calcd for C11H10FN2O2 [M + H+]: 221.0721, found 221.0728.

Figure

alexis prieto

Alexis prieto

Chercheur postdoctoral chez Melchiorre group, ICIQ

Melchiorre group, ICIQ

Didier Bouyssi at Claude Bernard University Lyon 1
Univ Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, CNRS UMR 5246), F-69622 Villeurbanne, France
//////////////

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Tuesday 21 November 2017

2,4-dimorpholinocyclopent-2-enone


1465003-25-1 cas

2,4-dimorpholinocyclopent-2-enone (1b):
1H NMR (300 MHz, CDCl3) 6.24 (d, J = 2.9 Hz, 1H, COC=CH), 3.78 (t, J = 4.7 Hz, 4H, morpholine), 3.73 (t, J = 4.7 Hz, 4H, morpholine), 3.73-3.72 (m, 1H, COCH2CHN), 3.15-3.14 (m, 4H, morpholine), 2.54-2.52 (m, 4H, morpholine), 2.49-2.48 (m, 1H, COCH2), 2.46-2.45 (m, 1H, COCH2);
13C NMR (75 MHz, CDCl3) 38.1, 48.1, 50.0, 60.3, 66.6, 67.1, 129.5, 151.7, 202.0.

Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural

Abstract

Chiral cyclopentenones are important precursors in the asymmetric synthesis of target molecules. In particular, C-2 amino cyclopentenones could be utilised as intermediates towards antitumor natural products. On the basis of our previous experience, we report an environmentally friendly protocol for the synthesis of bifunctionalized cyclopentenones in water from furfural. The use of water and MW gives high regioselectivity and good to excellent yields. The reaction can be realized in short times with various nucleophiles.
Graphical abstract: Water excellent solvent for the synthesis of bifunctionalized cyclopentenones from furfural
Image result for M. Nardi, chimica
Università della Calabria
Department
  • Dipartimento di Chimica e Tecnologie Chimiche - CTC
  • Research experience

    • Oct 2014–present
      Visiting Lectur
      The School of Pharmacy · School of Pharmacy · Prof Steve Brocchini
      United Kingdom · London
    • Jan 2014–present
      PostDoc Position
      Università della Calabria · Department of Pharmacy, Health and Nutritional Sciences
      Italy · Rende
    • Mar 2001–Sep 2014
      PostDoc
      Università della Calabria · Department of Management
      Italy · Rende
    • Mar 2001–Dec 2013
      PostDoc Position
      Università della Calabria · Dipartimento di Chimica e Tecnologie Chimiche - CTC · Prof Giovanni Sindona
      Italy · Rende
Image result for Dipartimento di Chimica, Università della Calabria
Image result for Dipartimento di Chimica, Università della Calabria
Dipartimento di Chimica, Università della Calabria

1 Estevão, Mónica S.; Afonso, Carlos A.M.; Tetrahedron Letters; vol. 58; nb. 4; (2017); p. 302 - 304
2  Green Chemistry; vol. 19; nb. 1; (2017); p. 164 - 168



“ORG SPECT INT” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent
Follow amcrasto on Twitter