DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Friday 1 September 2017

Route to Benzimidazol-2-ones via Decarbonylative Ring Contraction of Quinoxalinediones: Application to the Synthesis of Flibanserin, A Drug for Treating Hypoactive Sexual Desire Disorder in Women and Marine Natural Product Hunanamycin Analogue

logo
Image result for ncl pune
str0
Route to Benzimidazol-2-ones via Decarbonylative Ring Contraction of Quinoxalinediones: Application to the Synthesis of Flibanserin, A Drug for Treating Hypoactive Sexual Desire Disorder in Women and Marine Natural Product Hunanamycin Analogue
 Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
 Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
ACS Omega, 2017, 2 (8), pp 5137–5141
DOI: 10.1021/acsomega.7b00819
 
*E-mail: ds.reddy@ncl.res.in. Phone: +91-20-2590 2445 (D.S.R.).
 
ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
INTRODUCTION
Benzimidazol-2-ones 1 are an important class of heterocycles and a privileged scaffold in medicinal chemistry. They consist of cyclic urea fused with the aromatic backbone, which can potentially interact in a biological system by various noncovalent interactions such as hydrogen bonding and π stacking. Benzimidazolone derivatives exhibit a wide range of biological activities, and they are useful in treating various diseases including cancer, type II diabetes, central nervous system disorders, pain management, and infectious disease.1 Selected compounds embedded with a benzimidazol-2-one moiety along with their use are captured in Figure 1. It is worth mentioning that oxatomide drug with a benzimidazol-2-one core was approved for marketing a few years ago.2a Very recently, US Food and Drug Administration approved a new drug called flibanserin for the treatment of hypoactive sexual desire disorder (HSDD) in females, which contains benzimidazol-2- one motif.2b
CONCLUSIONS
We have developed a mild and new protocol for the synthesis of benzimidazol-2-ones from quinoxalinediones through decarbonylation. The present methodology can be an addition to the toolbox to prepare benzimidazolones, and it will be useful in medicinal chemistry, particularly, late-stage functionalization of natural products, drug scaffolds, or an intermediate containing quinoxaline-2,3-diones. As direct application of this method, we have successfully developed a new route for the synthesis of recently approved drug flibanserin and a urea analogue of antibiotic natural product hunanamycin A. Later application demonstrates the utility of the present method in late-stage functionalization

Synthesis of 1-(2-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)ethyl)-1,3-dihydro-2Hbenzo[d]imidazol-2-one (Flibanserin)
Flibanserin hydrochloride as white solid.
1H NMR (400MHz ,DMSO-d6)  11.06 (s, 1 H), 10.93 (br. s., 1 H), 7.54 - 7.41 (t, J = 7.9 Hz, 1 H), 7.36 - 7.22 (m, 3 H), 7.15 (d, J = 7.6 Hz, 1 H), 7.09 – 7.01 (m, 3 H), 4.30 (t, J = 6.7 Hz, 2 H), 4.01 (d, J = 11.6 Hz, 2 H), 3.75 (d, J = 10.4 Hz, 2 H), 3.54 - 3.43 (d, J = 4.2 Hz 2 H), 3.31 - 3.10 (m, 4 H);
HRMS (ESI): m/z calculated for C20H22ON4F3[M+H]+ 391.1740 found 391.1743;
str0STR1
Figure
Scheme 4. Synthesis of Flibanserin through Ring Contraction
The same methodology was applied for the synthesis of flibanserin, also known as “female viagra”, which is the first approved medication for treating HSDD in women and is classified as a multifunctional serotonin agonist antagonist.(14, 15) Our synthesis of flibanserin commenced with 1-benzyl-1,4-dihydroquinoxaline-2,3-dione 36,(16) which was reacted with known chloride 37(17) under the basic condition in DMF to give the desired product 38 in good yield. Compound 38 was subjected for the decarbonylative cyclization under the optimized condition to afford the product 39 in 59% yield. Finally, the benzyl group was deprotected using trifluoromethanesulfonic acid in toluene under microwave irradiation,(8b, 18) which gave flibanserin in excellent yield (Scheme 4). The final product was isolated as HCl salt, and all of the spectral data are in agreement with the published data.(15c)
Image result for Rahul D. Shingare
Rahul D. Shingare completed his M.Sc  (Chemistry) from Fergusson College,  Pune  in 2008. He worked as a research associate in Ranbaxy and Lupin New drug discovery center, Gurgaon and Pune respectively until 2012 and currently pursuing his doctoral research in NCL - Pune from 2012.
Current Research Interests: Antibacterial Natural Product Hunanamycin A: Total Synthesis, SAR and Related Chemistry.
e-mail: rd.shingare@ncl.res.in







Akshay Kulkarni completed his M.Sc. from Ferguson College, Pune University in the year 2015 and joined our group as a Project Assistant in the month of October, 2015.
Current research interest: Synthesis of silicon incorporated biologically active antimalerial compounds.
e-mail : as.kulkarni@ncl.res.in
Image result for Rahul D. Shingare

Dr.D. Srinivasa Reddy
Organic Chemistry Division
CSIR-National Chemical Laboratory
  1. 14.
    StahlS. M. Mechanism of action of Flibanserin, A multifunctional serotonin agonist and antagonist (MSAA), in hypoactive sexual desire disorder CNS Spectrums 2015201 DOI: 10.1017/s1092852914000832
  2. 15.
    See, previous synthesis of Flibanserin:
    (a) BiettiG.BorsiniF.TurconiM.GiraldoE.BignottiM. For treatment of central nervous system disorders. U.S. Patent 5,576,318, 1996.
    (b) MohanR. D.ReddyP. K.;ReddyB. V. Process for the preparation of Flibanserin involving novel intermediates. WO2010128516 A2,2010.
    (c) YangF.WuC.LiZ.TianG.WuJ.ZhuF.ZhangJ.HeY.ShenJ. A Facile route of synthesis for making Flibanserin Org. Process Res. Dev. 2016201576 DOI: 10.1021/acs.oprd.6b00108
  3. 16.
    JarrarA. A.FataftahZ. A. Photolysis of some quinoxaline-1,4-dioxides Tetrahedron 1977332127 DOI: 10.1016/0040-4020(77)80326-8
  4. 17.
    XueongX. Preparation method of Flibanserin. CN104926734 A, 2015.
  5. 18.
    RomboutsF.FrankenD.Martínez-LamencaC.BraekenM.ZavattaroC.ChenJ.TrabancoA. A.Microwave-assisted N-debenzylation of amides with triflic acid Tetrahedron Lett. 2010514815 DOI: 10.1016/j.tetlet.2010.07.022

//////////

Thursday 24 August 2017

Lifetime achievement award, WHC17, in Hyderabad, India 22 aug 2017







Lifetime achievement award ........WORLD HEALTH CONGRESS 2017 in Hyderabad, 22 aug 2017 at JNTUH KUKATPALLY. HYDERABAD, TELANGANA, INDIA, Award given by Dr. M Sunitha Reddy Head of the Department, Centre for Pharmaceutical Sciences, Institute of Science &Technology, JNTU-H, Kukatpally, Hyderabad, India






Speaking at World health congress 2017....JNTUH Hyderabad 22 aug 2017







Wednesday 9 August 2017

Selective reductive amination of aldehydes from nitro compounds catalyzed by molybdenum sulfide clusters


Selective reductive amination of aldehydes from nitro compounds catalyzed by molybdenum sulfide clusters
Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC01603D, Communication
Open Access Open Access
Creative Commons Licence  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
E. Pedrajas, I. Sorribes, K. Junge, M. Beller, R. Llusar
A one-pot selective synthesis of secondary amines catalyzed by a well-defined Mo3S4 cluster using hydrogen as a benign reductant

Selective reductive amination of aldehydes from nitro compounds catalyzed by molybdenum sulfide cluste


LLUSAR BARELLES, ROSA MARÍA
  • Catedràtic/a d'Universitat
  • Miembro del Claustro
  • Miembro del Consejo de Gobierno
  • Materiales Moleculares
  • TC1221DD - (964 728086)
  • llusar@uji.es

Reseña Personal

Rosa Llusar Barelles nace en Almenara (Castellón). En 1983 se licencia en Químicas por la Universidad de Valencia obteniendo el premio extraordinario de licenciatura. Su investigación doctoral se centra en la química de sulfuros de molibdeno y wolframio y se doctora por la Universidad de Valencia en 1987 y por la Universidad de Texas A&M (EE. UU) en 1988 bajo la dirección del profesor F. Albert Cotton. Después de trabajar durante tres años como técnico superior en la sección de investigación y desarrollo de una planta de producción de caprolactama en Castellón, realiza una estancia posdoctoral de un año (1992) con el profesor John D. Corbett en el Ames Laboratory (Iowa State University, EE. UU) investigando nuevas fases sólidas de haluros reducidos de tierras raras. En 1993 accede a una plaza de profesora interina en el Departamento de Ciencias Experimentales de la Universidad Jaume I de Castellón, en 1995 pasa a ser profesora Titular de Química Física y en 2009 Catedrática de Universidad.  Desde entonces ha desarrollado su actividad docente en la licenciatura y ahora grado en Química dentro del ámbito de la química física (cuántica, espectroscopia, termodinámica, cinética, electroquímica etc.). Actualmente imparte la asignatura de “nanomateriales” en el máster en Química Aplicada y Farmacológica de la Universitat Jaume I. Ha sido profesora visitante en la Universidad Católica de Valparaíso (Chile), Universidad de Angers (Francia), la Universidad de Rennes (Francia) y en la Universidad Estadual Paulista (Brasil) en 2015.
La Prof. Llusar lidera desde su creación en 1998, el grupo de investigación de materiales moleculares de la Universitat Jaume I (http://www.grupo-rllusar.uji.es/). Su investigación está centrada en la química de clústeres metálicos con especial énfasis en sus propiedades fisicoquímicas de cara al desarrollo de nuevos materiales moleculares multifuncionales con aplicaciones de interés tecnológico en catálisis, electrónica molecular y medicina. Hasta la fecha, la Prof. Llusar ha dirigido diez tesis doctorales, seis de ellas con mención de doctorado europeo o internacional y una sexta realizada en cotutela y defendida en la Universidad Central de Venezuela. Es coautora de más de ciento cincuenta artículos en revistas científicas internacionales indexadas. El Instituto Nikolaev perteneciente a la Academia Rusa de las Ciencias ha reconocido su labor investigadora y de cooperación otorgándole en junio de 2012 el título de Doctora “Honoris Causa”. El Consejo Social de la Universitat Jaume I la galardonó en 2015 con el XVII Premio a la Trayectoria Investigadora.
En el ámbito de la gestión universitaria ha ejercido como vicerrectora de investigación de la Universitat Jaume I desde junio de 2006 durante cuatro años y como directora de los Servicios Centrales de Investigación Científica desde junio de 2010 hasta septiembre de 2014. En la actualidad es miembro del Claustro y del Consejo de Gobierno de la esta Universidad.

Links

Biodata

Elena Pedrajas Gual is a PhD student in the Molecular Materials Group with a Predoctoral fellowship granted by the University Jaume I in April 2013. Previously, she was licensed in Chemistry in the same university and she studied the Master of Applied and Pharmacologic Chemistry, in the specialty of Advanced Materials. She also was granted with another fellowship by the university and a collaboration fellowship by the Spanish Ministry of Education, which were both developed in the same research group.
She is a member of the Molecular Materials Group since 2012, and her line of research is focused in the synthesis and characterization of M3S4 and M3M'S4 clusters (M= Mo, W and M'= transition metal) functionalized with nitrogen donor ligands. Later, the reactivity of the new clusters is studied and also their catalytic activity in industrial processes of interest.
She is the author of an article published in the journal of catalysis ChemCatChem during the year 2015, and she has presented her results in both national and international conferences. She has participated in different research projects of Spanish Ministry, Valencian Community and University Jaume I. She did a temporary stay during two months in the "Leibniz-Institüt für Katalyse" in Rostock (Germany), under the supervision of Professor Matthias Beller.
Her teaching career will start during the academic year 2015-2016 with the course Physical Chemistry IV in the Bachelor's Degree in Chemistry, which consist of an introduction to the basic principles of spectroscopy

Abstract

Secondary amines are selectively obtained from low value starting materials using hydrogen and a non-noble metal-based catalyst. The reductive amination of aldehydes from nitroarenes or nitroalkanes is efficiently catalyzed by a well-defined diamino molybdenum sulfide cluster in a one-pot homogeneous reaction. The integrity of the molecular cluster catalyst is preserved along the process.
N-(4’-Methoxybenzyl)aniline3 :
1H NMR (300 MHz, CDCl3) δ 7.26 (d, J = 8.6 Hz, 2H), 7.21 – 7.11 (m, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.69 (t, J = 7.3 Hz, 1H), 6.64 – 6.58 (m, 1H), 4.22 (s, 2H), 3.92 (br s, 1H), 3.77 (s, 3H);
13C NMR (75 MHz, CDCl3) δ 158.96, 148.32, 131.53, 129.35, 128.90, 117.59, 114.13, 112.94, 55.39, 47.89;
MS (EI): m/z (rel. Int) 213.

1H AND 13C NMR PREDICTIONS
CLICK OM IMAGE FOR CLEAR VIEW

Monday 31 July 2017

Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

 

Catal. Sci. Technol., 2017, 7,3008-3016
DOI: 10.1039/C7CY00463J, Paper
Anastasia Rapeyko, Karen S. Arias, Maria J. Climent, Avelino Corma, Sara Iborra
Monomers from biomass have been prepared from HMF and methylene active compounds through a one pot process using MIL-100(Fe)/TEMPO/NaNO2 as the catalytic system.

Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

Anastasia Rapeyko

Anastasia Rapeyko

Química

Instituto de Tecnologia Quimica UPV-CSIC

 Universitat Politècnica de València (UPV)

Valencia Area, Spain


Abstract

Furilydenepropanenitrile derivatives, which are useful as monomers, have been obtained in high yields by coupling the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) and the Knoevenagel condensation of DFF with methylene active compounds in a one pot process.
The oxidation step was studied using an Fe containing metal–organic framework (MIL-100(Fe), and Fe(BTC)), a Cu containing MOF (Cu3(BTC)2), an Fe exchanged HY zeolite and homogeneous Fe salts in the presence of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) as a cocatalyst, NaNO2 as an additive and oxygen as the terminal oxidant.
The results showed that the synthesized MIL-100(Fe) post treated with NH4F was the most active catalyst achieving 100% HMF conversion with 100% selectivity to DFF and can be reused with good success.
Additionally, the catalytic system has been applied to the oxidation of different primary and secondary alcohols to aldehydes and ketones under mild reaction conditions with good success.
The second step, the Knoevenagel condensation of the obtained DFF with malononitrile or ethyl cyanoacetate, was performed taking advantage of the basicity of the reaction medium.
Graphical abstract: Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst
 
 
Diethyl 3,3´-(2,5-furandiyl)(2E,2’E)-bis(2-cyanoacrylate) (2b)
 
1H NMR (300 MHz, CDCl3): δ 8.07 (=CH, s, 2H), 7.62 (s, 2H, ArH), 4.38 (CH2, q, 4H, J = 7.1 Hz), 1.39 (CH3, t, 6H, J=7.1 Hz);
 
13C NMR (75 MHz, CDCl3): δ 161.4 (C=O), 151.7 (C), 138.0 (=CH), 121.9 (CN), 114.5 (CH), 103.6 (C-CN), 63.1 (O-CH2), 14.1 ppm (CH3).
 
MS m/z (%) 314 (M+ , 100), 286 (17), 269 (55), 240 (58), 214 (26), 196 (14), 170 (14), 142 (17), 114 (16), 89 (12), 29 (22).
 
 
 
2,2´-(2,5-Furandiyldimethylidyne)-bis-propanedinitrile (2a)
 
1H NMR (300 MHz, DMSO-d6): δ 8.45 (=CH, s, 2H), 7.66 (s, 2H, ArH).
 
13C NMR (75 MHz, DMSO-d6): δ 151.6 (CH), 143.7 (C), 124.9 (CH), 113.7, 112.3, 81.4 ppm (C).
 
MS m/z (%) 220 (M+ , 100), 193 (9), 157 (6), 105 (15), 77 (12).
 
 
 
2,5-diformylfuran:
1 H NMR (300 MHz, CDCl3): δ 9.85 (s, 2H, CHO), 7.33 (s, 2H, ArH).
 
13C NMR (75 MHz, CDCl3): δ 179.1 (CHO), 154.2 (C), 119.1 ppm (CH).
 
MS m/z (%) 124 (M+ , 100), 123 (70), 97 (100), 95 (24), 67 (5), 39 (27), 38 (14).
 
 
 
 
Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
Insituto de Tecnología Química
Image result for Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
Image result for Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, SpainImage result for Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
Image result for Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
///////////////

Tuesday 25 July 2017

CuI nanoparticles as recyclable heterogeneous catalysts for C-N bond formation reactions


Catal. Sci. Technol., 2017, 7,2857-2864
DOI: 10.1039/C7CY00832E, Paper
Manoranjan Kumar, Vinod Bhatt, Onkar S. Nayal, Sushila Sharma, Vishal Kumar, Maheshwar S. Thakur, Neeraj Kumar, Rajaram Bal, Bikram Singh, Upendra Sharma
Herein, copper iodide nanoparticles (NPs) are reported for the reductive amination of carbonyl compounds for the first time.

Catalysis Science & Technology

CuI nanoparticles as recyclable heterogeneous catalysts for C–N bond formation reactions

 

Abstract

Herein, copper iodide nanoparticles (NPs) are reported for the reductive amination of carbonyl compounds for the first time. The generated NPs were characterized by TEM, EDX, XRD and XPS analyses. The XRD patterns, XPS, and EDX analysis confirmed that the resulting NPs were CuI instead of Cu. The TEM images of CuI exhibited the size of monodispersed spherical NPs in the range of 4 ± 2 nm. These generated NPs can be used as versatile heterogeneous catalysts for important organic transformations. As a proof of concept, CuI NPs were successfully applied as heterogeneous catalysts for the synthesis of secondary amines, amides and triazoles. CuI NPs can be easily recovered and recycled up to six times.

.1H and 13C NMR values of synthesized compounds
N‒benzylaniline (3a): Brown oil (168 mg, 92% yield),

1H NMR (CDCl3, 600MHz) δ : 4.35 (s, 2H), 6.66 (d, 2H, J = 7.8 Hz), 6.72 (t, 2H, J =7.32 Hz), 7.18‒7.21 (m, 2H), 7.28 (t, 1H, J = 7.14 Hz), 7.35‒7.40 (m, 4H);

13C NMR (CDCl3, 150 MHz) δ : 48.3, 112.8, 117.6, 127.2, 127.5, 128.6, 129.3, 139.4, 148.1;
HRESIMS calcd for C13H14N [M+H]+ 184.1129, found 184.1109.
1H AND 13C NMR PREDICT

//////////