DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Friday, 22 September 2017

Diethyl Chlorophosphate


 
 
Diethyl Chlorophosphate (CAS no 814–49–3)(15)
Preparative Procedure
In a dry four-neck 250 mL round-bottom flask equipped with a mechanical stirrer, a thermometer, and an argon inlet were introduced at 20 °C triethylamine (21.3 g, 210 mmol), tert-butyl methyl ether (75 mL), and ethanol (9.67 g, 210 mmol). Phosphorus oxychloride (15.3 g, 100 mmol) was added dropwise in 10 min via a syringe; the temperature was maintained below −5 °C. Then, the cooling bath was removed and the white suspension was vigorously stirred during 5 h at 20 °C. The mixture was filtered and the solid was rinsed with 3 × 100 mL of diethyl ether. The solvents were removed under vacuo. The resulting crudez product was distilled under reduced pressure to afford 15.4 g (89% yield) of diethyl chlorophosphate containing 3% of triethylphosphate.
Eb3 = 51 °C (lit:(3) Eb10 = 85–87 °C).
 
1H NMR (CDCl3, 300 MHz, δ): 1.37 (6H, t, J = 6.0 Hz), 4.16–4.30 (4H, m).
 
13C NMR (CDCl3, 75 MHz, δ): 15.6 (d, J = 7.5 Hz), 65.7 (d, J = 6.8 Hz).
 
 
31P RMN (CDCl3, 121 MHz, δ): 4.5.
 
15AcharyaJ.GuptaA. K.ShakyaP. D.KaushikM. P. Tetrahedron Lett. 2005465293 DOI: 10.1016/j.tetlet.2005.06.024
 
str1 str2 str3
 
 

Eco-Friendly and Industrially Scalable Synthesis of the Sex Pheromone of Lobesia botrana. Important Progress for the Eco-Protection of Vineyard

 Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France
 M2i, Route Nationale 117, Lotissement Induslacq, 64170 Lacq, France
§ Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny, France
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00206
 
 
氯磷酸二乙酯
 
 
 
氯磷酸二乙酯
 
 
 
氯磷酸二乙酯
 
http://www.rsc.org/suppdata/c6/nj/c6nj03712g/c6nj03712g1.pdf

Wednesday, 20 September 2017

Catalyst-free multi-component cascade C–H-functionalization in water using molecular oxygen: an approach to 1,3-oxazines


 

Catalyst-free multi-component cascade C-H-functionalization in water using molecular oxygen: an approach to 1,3-oxazines
Green Chem., 2017, 19,4036-4042
DOI: 10.1039/C7GC01494E, Communication
Mohit L. Deb, Choitanya D. Pegu, Paran J. Borpatra, Prakash J. Saikia, Pranjal K. Baruah
Synthesis of 1,3-oxazines via catalyst free C-H functionalization using molecular oxygen in water.

Catalyst-free multi-component cascade C–H-functionalization in water using molecular oxygen: an approach to 1,3-oxazines


 Author affiliations

Abstract

Herein, catalyst-free 3-component reactions of naphthols, aldehydes, and tetrahydroisoquinolines to synthesize 1,3-oxazines is reported. The reaction is performed in H2O in the presence of O2 as the sole oxidant at 100 °C, which proceeds through the formation of 1-aminoalkyl-2-naphthols followed by selective α-C–H functionalization of tert-amine.
15-phenyl-7a,12,13,15-tetrahydronaphtho[1',2':5,6][1,3]oxazino[2,3- a]isoquinoline (4a):1
White solid; Yield 61 %, 221 mg;
1H NMR (500 MHz, CDCl3): δ 7.79-7.77 (m, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.43-7.41 (m, 1H), 7.33-7.28 (m, 8H), 7.24-7.19 (m, 3H), 7.11 (d, J = 8.9 Hz, 1H), 5.65 (s, 1H), 5.44 (s, 1H), 3.40-3.26 (m, 2H), 3.12-3.09 (m, 1H), 2.90- 2.86 (m, 1H);
13C NMR (125 MHz, CDCl3): δ 151.9, 142.3, 135.0, 133.0, 132.4, 129.3, 129.1, 128.9, 128.8 (2C), 128.7, 128.6, 128.2, 127.4, 126.5, 126.2, 123.1, 122.7, 118.9, 110.9, 82.2, 62.6, 45.4, 29.4;
HRMS (ESI) exact mass calculated for C26H21NO [M+H]+ : 364.1701; found: 364.1705.
The representative procedure for the synthesis of 4a is as follows: 2-naphthol (1a, 144 mg, 1 mmol), benzaldehyde (2a, 106 mg, 1 mmol), tetrahydroisoquinoline (3, 133 mg, 1 mmol) and water (1.5 mL) were added in a round-bottom flask equipped with a magnetic stirring bar and a reflux condenser. The whole apparatus was efficiently flushed with oxygen gas and then connected to a balloon filled with oxygen. After vigorous stirring at 100 oC for 12 h, water was removed under vacuum and purified the reaction mixture by column chromatography (100-200 mesh silica gel, hexane-ethyl acetate) to obtain the product 4a as white solid. The other 1,3-oxazines were synthesized and purified by following the procedure described above
str4
STR7str6
//////////////

Sunday, 17 September 2017

2,5-Diformylfuran an easy molecule to learn NMR

2,5-Diformylfuran (DFF), 5 (lit. 2 ) 2 Kashparova, V. P., Khokhlova, E. A., Galkin, K. I., Chernyshev, V. M. & Ananikov, V. P. The “onepot” synthesis of 2,5-diformylfuran, a promising synthon for organic materials in the conversion of biomass. Russ. Chem. Bull. 64, 1069-1073 (2015).

1H NMR (CDCl3) = 9.87 (s, 2H), 7.35 (s, 2H);

13C NMR (CDCl3) = 181.1, 154.1, 122.5 ppm.




Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02211E, Paper
F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov
Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations
//////////

Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates

Abstract Image
A convenient transformation of phenols into the corresponding aryl fluorosulfates is presented: the first protocol to completely circumvent direct handling of gaseous sulfuryl fluoride (SO2F2). The proposed method employs 1,1′-sulfonyldiimidazole as a precursor to generate near-stoichiometric amounts of SO2F2 gas using a two-chamber reactor. With NMR studies, it was shown that this ex situ gas evolution is extremely rapid, and a variety of phenols and hydroxylated heteroarenes were fluorosulfated in good to excellent yields.

Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of Aryl Fluorosulfates

Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
Org. Lett., Article ASAP
DOI: 10.1021/acs.orglett.7b02522

http://pubs.acs.org/doi/abs/10.1021/acs.orglett.7b02522?utm_content=bufferd3ad9&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

4-fluoro-[1,1'-biphenyl]-4-yl sulfurofluoridate (compound 1) 
General procedure A was followed using 192 mg of 4-fluoro-4’-hydroxybiphenyl (98 wt%, 1.0 mmol, 1.0 eq.). The crude reaction mixture was purified by solid-phase flash column chromatography on silicagel (heptane, 100%). The title compound was obtained as a white solid (258 mg, 96%). Rf = 0.39 (heptane/ethyl acetate, 9/1). Melting point = 47 – 49 °C.
1 H NMR (400 MHz, CDCl3): 7.62 (d, J = 8.5 Hz, 1H), 7.52 (dd, J = 8.1, 5.5 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.16 (t, J = 8.5 Hz, 1H). 
13C NMR (101 MHz, CDCl3): δ 163.05 (d, J = 247.9 Hz), 149.51, 141.17, 135.55 (d, J = 3.3 Hz), 129.06, 128.98, 121.42, 116.13 (d, J = 21.6 Hz).
19F NMR (376 MHz, CDCl3): δ 37.18, -114.68 (m).
 IR (neat) cm-1 : 1437, 1232, 921, 815. 
CHN: calculated for C12H8F2O3S: C 53.33%, H 2.98%, N 0.00%; found: C 53.43%, H 3.26%, N 0.00%.



/////////////

2,5-Bis(morpholinomethyl)furan


2,5-Bis(morpholinomethyl)furan, 11

Yield 98%, 1H NMR (CDCl3) = 6.13 (s, 2H), 3.70 (m, 8H), 3.51 (s, 4H), 2.45 (m, 8H);

13C NMR (CDCl3) = 150.9, 109.7, 66.8, 55.3, 53.2 ppm.

 m/z HRMS (ESI) Calcd. for C14H22N2O3 [M+H]: 267.1703. Found 267.1703.






Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02211E, Paper
F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov
Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations
//////////

Saturday, 16 September 2017

Endo-4,7-bis(hydroxymethyl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (endo-4,7- bis(hydroxymethyl)norcantharimide)






Endo-4,7-bis(hydroxymethyl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (endo-4,7- bis(hydroxymethyl)norcantharimide), 4 (method A)

Endo-4,7-bis(hydroxymethyl)norcantharimid-5-ene (120 mg, 0.53 mmol) was dissolved in water (3 mL), Pd/C 10% was added (15 mg) and reaction mixture was placed under hydrogen atmosphere for 8 h at 24 °C. Catalyst was filtered off and washed thoroughly with water (3 × 3 mL), filtrate was evaporated under reduced pressure. Target compound 4 was obtained as white solid, yield 87% (110 mg).

1H NMR (D2O) = 3.76 (s, 4H), 3.46 (s, 2H), 1.61-1.72 (m, 4H);

1H NMR (DMSO-d6) = 11.10 (s, 1H), 5.08 (s, 2H), 3.66 (s, 4H), 3.37 (s, 2H), 1.71 (m, 2H), 1.49 (m, 2H);

13C NMR (D2O) = 179.0, 88.8, 60.7, 52.3, 27.0 ppm.

m/z HRMS (ESI) Calcd. for C10H13NO5 [M+Na]: 250.0686. Found 250.0696.

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02211E, Paper
F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov
Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations
//////////

2,5-Bis(ethoxymethyl)furan

2,5-Bis(ethoxymethyl)furan, 6

1H NMR (CDCl3) = 6.20 (s, 2H), 4.36 (s, 4H), 3.47 (q, 4H, J = 7.1 Hz), 1.16 (t, 6H, J = 7.1 Hz);


13C NMR (CDCl3) = 150.9, 109.7, 65.7, 64.7, 15.1 ppm



PREDICTS





Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02211E, Paper
F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov
Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations
//////////

Efficient route for the construction of polycyclic systems from bioderived HMF


 

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02211E, Paper
F. A. Kucherov, K. I. Galkin, E. G. Gordeev, V. P. Ananikov
Efficient one-pot synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described using a [4 + 2] cycloaddition reaction.

Efficient route for the construction of polycyclic systems from bioderived HMF

 Author affiliations

Abstract

The first synthesis of tricyclic compounds from biobased 5-hydroxymethylfurfural (HMF) is described. The Diels–Alder reaction was used to implement the transition from HMF to a non-planar framework, which possessed structural cores of naturally occurring biologically active compounds and building blocks of advanced materials. A one-pot, three-step sustainable synthesis in water was developed starting directly from HMF. The reduction of HMF led to 2,5-bis(hydroxymethyl)furan (BHMF), which could be readily involved in the Diels–Alder cycloaddition reaction with HMF-derived maleimide, followed by hydrogenation of the double bond. The described transformation was diastereoselective and proceeded with a good overall yield. The applicability of the chosen approach for the synthesis of analogous structures containing amine functionality on the side chain was demonstrated. To produce the target compounds, only platform chemicals were used with carbohydrate biomass as the single carbon source.

Endo-4,7-bis(hydroxymethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione (endo-4,7-bis(hydroxymethyl)norcantharimid-5-ene), 3

1H NMR (DMSO-d6) = 10.82 (s, 1H), 6.37 (s, 2H), 5.11 (t, 2H, J = 5.7 Hz), 3.97 (dd, 2H, J = 5.7 Hz, 12.8 Hz), 3.84 (dd, 2H, J = 5.7 Hz, 12.8 Hz), 3.44 (s, 2H);
13C NMR (DMSO-d6) = 176.9, 136.0, 92.1, 59.8, 48.8 ppm.
m/z HRMS (ESI) Calcd. for C10H11NO5 [M+Na]: 248.0529. Found 248.0536.
STR7
str4 str6
1H NMR PREDICT

str4
str4 str6
13C NMR PREDICT

str4 str6
//////////
O=C1NC(=O)[C@H]3[C@@H]1[C@]2(C=C[C@]3(CO)O2)CO

Thursday, 7 September 2017

Metal-free oxidative cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen

Metal-free oxidative cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC02014G, Communication
Yanjun Xie, Xiangui Chen, Zhen Wang, Huawen Huang, Bing Yi, Guo-Jun Deng
Aerobic cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen under metal-free conditions.

Metal-free oxidative cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen


http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C7GC02014G?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Abstract

Metal-free oxidative cyclization for the one-pot synthesis of benzo[d]imidazo[2,1-b]thiazoles from 2-aminobenzothiazoles and cyclic ketones is described. Elemental sulfur combined with molecular oxygen as the benign co-oxidant was found to be unique and highly effective to promote this transformation without the aid of any metal salts. Various cyclic ketones smoothly reacted with 2-aminobenzothiazoles to give functional benzo[d]imidazo[2,1-b]thiazoles in good to very high yields, which thereby demonstrated the synthetic convergence of this methodology.
Graphical abstract: Metal-free oxidative cyclization of 2-aminobenzothiazoles and cyclic ketones enabled by the combination of elemental sulfur and oxygen
 
 
7,8,9,10-Tetrahydrobenzo[d]benzo[4,5]imidazo[2,1-b]thiazole (3a)
White solid; yield: 39.2 mg (86%), mp 140-142 °C.
STR1
 
1H NMR (400 MHz, CDCl3, ppm) δ 7.67-7.62 (m, 2H), 7.38 (t, J = 7.76 Hz, 1H), 7.27 (t, J = 7.68 Hz, 1H), 3.07-3.04 (m, 2H), 2.77-2.74 (m, 2H), 2.00-1.95 (m, 2H), 1.92-1.86 (m, 2H);
 
13C NMR (100 MHz, CDCl3, ppm) δ 145.1, 142.4, 132.9, 129.7, 125.5, 123.9, 123.5, 121.8, 111.9, 24.8, 22.8, 22.7, 21.8;
 
MS (EI) m/z (%) 228, 200 (100), 160, 108, 51;
 
HRMS calcd. for: C13H13N2S + (M+H)+ 229.07940, found 229.07941.
 
 
 STR2
 
 
str3
PREDICT
 
STR1
 
STR2
cas 325766-28-7
C13 H12 N2 S, 228.31,  Benzimidazo[2,​1-​b]​benzothiazole, 7,​8,​9,​10-​tetrahydro-
///////////////
C1CCCc2c1nc3sc4ccccc4n23