Pages

Pages

Sunday, 28 December 2014

A graph theory approach to structure solution of network materials from two-dimensional solid-state NMR data







An NMR crystallography strategy is presented for solving the structures of materials such aszeolites and related network materials from a combination of the unit cell and space group information derived from a diffraction experiment and a single two-dimensional NMR correlationspectrum that probes nearest-neighbour interactions.

 By requiring only a single 2D NMR spectrum, this strategy overcomes two limitations of previous approaches. First, the structures of materials having poor signal-to-noise in solid-state NMR experiments can be investigated using this approach since a series of 2D spectra is not required. Secondly, 

the structures of aluminophosphate materials can potentially be determined from 27Al/31solid-state NMRexperiments since this approach does not require the isolated spin pairs which have been important for determining structures of silicate materials by 29Si solid-state NMR. Using concepts from graph theory, the structure solution strategy is described in detail using a hypothetical two-dimensional network structure. A collection of two-dimensional network structures generated by the algorithm under various initial conditions is presented.

 The algorithm was tested on a series of 27 zeolite framework types found in the International Zeolite Association’s zeolite structure database. Finally, the structure of the zeolite ITQ-4 was solved from powder X-ray diffraction data and a single 29Si double quantum NMR correlation spectrum. The limitations of the strategy are discussed and new directions for this approach are outlined.


Graphical abstract: A graph theory approach to structure solution of network materials from two-dimensional solid-state NMR data

CrystEngComm, 2013,15, 8748-8762

DOI: 10.1039/C3CE41058G










No comments:

Post a Comment