DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Sunday, 26 June 2016

N-Skatylpiperidine




  N-Skatylpiperidine

N-Skatylpiperidine; 5355-42-0; 3-((PIPERIDIN-1-YL)METHYL)-1H-INDOLE; 3-(Piperidinomethyl) indole; NSC 24532; 3-(piperidin-1-ylmethyl)-1H-indole;


 Molecular Formula:

C14H18N2
Molecular Weight: 214.30612 g/mo

N-Skatylpiperidine.png

1H NMR



  Patent ID

DatePatent Title
US70493122006-05-23Benzothiazinone and benzoxazinone compounds
EP05924381997-08-27INDOLE DERIVATIVES
US55763361996-11-19Indole derivatives as dopamine D4 antagonists
WO94216271994-09-29INDOLE DERIVATIVES AS DOPAMINE D4 ANTAGONISTS
EP02135711987-03-113-Aminomethyl pyrrol-1-yl-alkyl amines and medicaments containing these compounds. 3-AMINOMETHYL PYRROL-1-YL-ALKYL AMINES AND MEDICAMENTS CONTAINING THESE COMPOUNDS


http://pubs.acs.org/doi/full/10.1021/acs.jmedchem.6b00478
/////C(N1CCCCC1)C1=CNC2=C1C=CC=C2

 Isle of Skye, UK, SCOTLAND

Map of Isle of Skye
Skye
Island in Scotland
The Isle of Skye, connected to Scotland's northwest coast by bridge, is known for its rugged landscapes, picturesque fishing villages and medieval castles. The largest island in the Inner Hebrides archipelago, it has an indented coastline of peninsulas and narrow lochs, radiating out from a mountainous interior. The town of Portree, a base for exploring the island, features harbourside pubs and boutiques.
 https://media-cdn.tripadvisor.com/media/photo-s/03/a3/30/4e/isle-of-skye.jpg
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 




/////////

Friday, 24 June 2016

Visible-light photoredox catalysis: direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors


Graphical abstract: Visible-light photoredox catalysis: direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors.


Fused β-carbolines were synthesized via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Several structurally diverse heterocyclic scaffolds were obtained in good yields by coupling of tetrahydro-β-carbolines with a variety of dipolarophiles under photoredox multiple C–C bond forming events. The photoredox coupling of tetrahydro-β-carboline with 1,4-benzoquinone was significantly faster in continuous flow microreactors and the desired products were obtained in higher yields compared to batch reactors.



Visible-light photoredox catalysis: direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors

*
Corresponding authors
a
Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India 
E-mail: ramaurya@iict.res.in
b
National Institute of Pharmaceutical Education and Research, Balanagar, Hyderabad-500035, India
c
Academy of Scientific and Innovative Research, New Delhi 110025, India
Org. Chem. Front., 2015,2, 1308-1312

DOI: 10.1039/C5QO00207A 





















 http://pubs.rsc.org/en/content/articlelanding/2015/qo/c5qo00207a#!divAbstract
 Jeevak Kapure

 http://pubs.rsc.org/en/content/articlelanding/2015/qo/c5qo00207a#!divAbstract





 


 

 

 


Ram Awatar Maurya




Fused β-carbolines were synthesized via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors.
Several structurally diverse heterocyclic scaffolds were obtained in good yields by coupling of tetrahydro-β-carbolines with a variety of dipolarophiles under photoredox multiple C–C bond forming events.
The photoredox coupling of tetrahydro-β-carboline with 1,4-benzoquinone was significantly faster in continuous flow microreactors and the desired products were obtained in higher yields compared to batch reactors.
Synthetic procedures General experimental procedures for the synthesis of N-alkylated of tetrahydro-β-carbolines 1a-f: In a 25 mL round bottom flask, tryptoline (86 mg, 0.5 mmol), α-halo carbonyls (0.5 mmol), Et3N (50 mg, 0.5 mmol) and CH2Cl2 (5 mL) was taken and the reaction mixture was stirred at ambient temperature for 2 h. Next the reaction mixture was diluted with CH2Cl2 (15 mL) and washed with water. The organic layer was dried over anhydrous Na2SO4 and evaporated to yield a crude product which was purified by silica-gel column chromatography using ethyl acetate/hexane in increasing polarity to yield compounds 1a-f.
General experimental procedures for the visible light photoredox catalyzed coupling of Nalkylated of tetrahydro-β-carbolines 1a-f with dipolarophiles 2a-g under batch conditions: In a 25 mL round bottom flask, tetrahydro-β-carbolines 1a-f (0.1 mmol), dipolarophiles 2a-g (0.1 mmol), [Ru(bpy)3Cl2]·6H2O (0.5 mol%) and MeCN (5 mL) was taken. The reaction vessel was kept at a distance of 10 cm (approx.) from a visible light source (11W white LED bulb) and the reaction mixture was stirred in open air condition until the reaction was complete (TLC). Next the reaction mixture was concentrated to give a crude product which was purified Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015 by silica-gel column chromatography using ethyl acetate/hexane in increasing polarity to yield compounds 3a-n
General experimental procedures for the visible light photoredox catalyzed coupling of Nalkylated of tetrahydro-β-carbolines 1a with dipolarophiles 2a in flow microreactors: A solution of tetrahydro-β-carboline 1a (0.2 mmol) and dipolarophile 2a (0.2 mmol) in MeCN (5 mL) was kept in one syringe and the solutions of photocatalyst [Ru(bpy)3Cl2]·6H2O (0.001 mmol in 5 mL MeCN) and t-BuOOH (2 mmol in 2 mL MeCN) were taken in two separate syringes. All the three solutions were pumped via two syringe pumps and mixed on an Xjunction and flown through the capillary microreactor wrapped over a visible light source (11W white LED bulb). Under stable conditions, exactly 6 mL of the reaction mixture was collected, concentrated to yield a crude product which was purified by silica-gel column chromatography using ethyl acetate/hexane in increasing polarity to yield compounds 3a
     






RESEARCH EXPERIENCE

 Mar 2012–Jun 2012, PostDoc Position
  • Pohang University of Science and Technology · Department of Chemical Engineering · Prof Dong Pyo Kim
    South Korea · Andong
  • Sep 2009–Feb 2012, Post Doctoral Fellow
    Chungnam National University
    South Korea · Daejeon
 
///////



 Bangladesh, Cox's Bazar
 
 

 
 
 





 

 

 


 

 


////////////

Lewis Acid Triggered Regioselective Magnesiation and Zincation of Uracils, Uridines, and Cytidines

Abstract Image


The Lewis acid MgCl2 allows control of the metalation regioselectivity of uracils and uridines. In the absence of the Lewis acid, metalation of uracil and uridine derivatives with TMPMgCl·LiCl occurs at the position C(5). In the presence of MgCl2, zincation using TMP2Zn·2LiCl·2MgCl2 occurs at the position C(6). This metalation method provides easy access to functionalized uracils and uridines. Using TMP2Zn·2LiCl·2MgCl2 also allows to functionalize cytidine derivatives at the position C(6).



The selective functionalization of uridines is an important synthetic goal because of the biological relevance of many substituted uridines. They are known to display antibiotic, antifungal, anticancer, and antiviral activity. Knochel and co-workers at Ludwig-Maximilians-Universität extended their investigation of metalation of heterocyclic systems to uridines. They reported the regioselective metalation of uridines at the C(5) or C(6) position and the subsequent functionalization of these metalated nucleoside derivatives with electrophiles ( Org. Lett. 2016, 18, 1068). Metalation of a protected uridine (A) with a slight excess of TMPMgCl·LiCl afforded the C(5) magnesiated uridine (C(5):C(6) = 98:2) in quantitative yield. The presence of MgCl2 inversed the regioselectivity of the metalation. Zincation of a protected uridine (A) with 1.2 equiv of TMP2Zn·2LiCl·2MgCl2 produced the C(6) bis-zincated uridine (C(5):C(6) = 3:97) also in quantitative yield. The C(5) or C(6) metalated uridines were then functionalized with a variety of electrophiles. This chemistry was successfully extended to the regioselective C6 metalation and functionalization of cytidines. The deprotection of the substituted uridines and cytidines afforded the corresponding functionalized nucleosides.

      

Lewis Acid Triggered Regioselective Magnesiation and Zincation of Uracils, Uridines, and Cytidines

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
Org. Lett., 2016, 18 (5), pp 1068–1071
DOI: 10.1021/acs.orglett.6b00190
Publication Date (Web): February 17, 2016
Copyright © 2016 American Chemical Society




////////////////Lewis Acid,  Regioselective Magnesiation, Zincation, Uracils, Uridines, Cytidines


 Kadwad,  Karwar,Uttara Kannada, Karnataka, india



 

 


 
 

 
 
 

 Kadwad Waterfront.

 Kadwad Waterfront

 
///////////