DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label 5'-[oxybis(methylene)]bis[2-furancarboxylic acid]. Show all posts
Showing posts with label 5'-[oxybis(methylene)]bis[2-furancarboxylic acid]. Show all posts

Tuesday 21 March 2017

Synthesis of 5,5'-[oxybis(methylene)]bis[2-furancarboxylic acid]


Graphical abstract: A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from d-fructose and its application in polyester synthesis

A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5[prime or minute]-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and its application in polyester synthesis

 
Green Chem., 2017, 19,1570-1575
DOI: 10.1039/C6GC03314H, Paper
Ananda S. Amarasekara, Loc H. Nguyen, Nnaemeka C. Okorie, Saad M. Jamal
A renewable monomer 5,5[prime or minute]-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose.

A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and its application in polyester synthesis

*Corresponding authors
aDepartment of Chemistry, Prairie View A&M University, Prairie View, USA
E-mail: asamarasekara@pvamu.edu
Fax: +1 936 261 3117
Tel: +1 936 261 3107
Green Chem., 2017,19, 1570-1575
D-Fructose was converted to the dialdehyde 5,5′-[oxybis(methylene)]bis[2-furaldehyde] by heating at 110 °C in DMSO with the Dowex 50 W X8 solid acid catalyst in 76% yield without the isolation of the intermediate 5-hydroxymethylfurfural. This dialdehyde was then converted to the dicarboxylic acid monomer, 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid], using oxygen (1 atm.) and 5% Pt/C catalyst in 1.5 M aqueous NaOH at room temperature in 98% yield. The new dicarboxylic acid monomer can be considered as a renewable resource based alternative to terephthalic acid as demonstrated by the preparation of polyesters with 1,2-ethanediol and 1,4-butanediol in 87–92% yield.
 

Synthesis of 5,5'-[oxybis(methylene)]bis[2-furancarboxylic acid]

 
pale yellow crystals. 260 mg, 98 % yield. M.pt. 207-209 °C, Lit. M. pt. 209-210 °C 37 .
 
IR (ATR) 761, 891, 951, 1029, 1059, 1159, 1208, 1283, 1342, 1424, 1525, 1674, 3128 cm-1
 
1 H NMR (DMSO-d6 ) δ 3.38 (2H, bs, 2XCOOH), 4.51 (4H, s, 2X-CH2O ), 6.61 (2H, d, J = 3.6 Hz, C-4,4'), 7.15 (2H, d, J = 3.6 Hz, C-3,3').
 
13C NMR (DMSO-d6 ) δ 63.8, 112.2, 118.8, 145.3, 155.5, 159.6
37. T. Iseki and T. Sugiura, J. Biochem., 1939, 30, 113-118.
 
NMR PREDICT
1H NMR PREDICT
 
 
 
13C NMR PREDICT
 
 
//////////////O=C(O)c2ccc(COCc1ccc(o1)C(=O)O)o2
Nowruz 2017
Nowruz 2017