DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label Functional Groups. Show all posts
Showing posts with label Functional Groups. Show all posts

Thursday, 4 December 2014

Mass Spectrometry - Functional Groups

Mass Spectrometry - Functional Groups


Alkanes: Simple alkanes tend to undergo fragmentation by the initial loss of a methyl group to form a (m-15) species. This carbocation can then undergo stepwise cleavage down the alkyl chain, expelling neutral two-carbon units (ethene). Branched hydrocarbons form more stable secondary and tertiary carbocations, and these peaks will tend to dominate the mass spectrum.


Aromatic Hydrocarbons: The fragmentation of the aromatic nucleus is somewhat complex, generating a series of peaks having m/e = 77, 65, 63, etc. While these peaks are difficult to describe in simple terms, they do form a pattern (the "aromatic cluster") that becomes recognizable with experience. If the molecule contains a benzyl unit, the major cleavage will be to generate the benzyl carbocation, which rearranges to form the tropylium ion. Expulsion of acetylene (ethyne) from this generates a characteristic m/e = 65 peak.
Aldehydes and Ketones: The predominate cleavage in aldehydes and ketones is loss of one of the side-chains to generate the substituted oxonium ion. This is an extremely favorable cleavage and this ion often represents the base peak in the spectrum. The methyl derivative (CH3CO+) is commonly referred to as the "acylium ion".
Another common fragmentation observed in carbonyl compounds (and in nitriles, etc.) involves the expulsion of neutral ethene via a process known as the McLafferty rearrangement, following the general mechanism shown below.

Esters, Acids and Amides: As with aldehydes and ketones, the major cleavage observed for these compounds involves expulsion of the "X" group, as shown below, to form the substituted oxonium ion. For carboxylic acids and unsubstituted amides, characteristic peaks at m/e = 45 and 44 are also often observed.

Alcohols: In addition to losing a proton and hydroxy radical, alcohols tend to lose one of the -alkyl groups (or hydrogens) to form the oxonium ions shown below. For primary alcohols, this generates a peak at m/e = 31; secondary alcohols generate peaks with m/e = 45, 59, 73, etc., according to substitution.

Ethers: Following the trend of alcohols, ethers will fragment, often by loss of an alkyl radical, to form a substituted oxonium ion, as shown below for diethyl ether.

Halides: Organic halides fragment with simple expulsion of the halogen, as shown below. The molecular ions of chlorine and bromine-containing compounds will show multiple peaks due to the fact that each of these exists as two isotopes in relatively high abundance. Thus for chlorine, the 35Cl/37Cl ratio is roughly 3.08:1 and for bromine, the 79Br/81Br ratio is 1.02:1. The molecular ion of a chlorine-containing compound will have two peaks, separated by two mass units, in the ratio  3:1, and a bromine-containing compound will have two peaks, again separated by two mass units, having approximately equal intensities.




The lists given above are by no means exhaustive and represents only the simplest and most common fragments seen in the mass spectrum.






http://newdrugapprovals.org/
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO