DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label KOLKATTA. Show all posts
Showing posts with label KOLKATTA. Show all posts

Saturday 26 March 2016

13C NMR Methylcyclohexane

.


 The spectrum of the cyclic hydrocarbon methylcyclohexane serves as a useful example of 13C NMR spectroscopy. The chemical shifts of different carbon atoms are larger than for hydrogen atoms, and the five magnetically different 13C atoms appear as five distinct peaks. Unlike proton spectra, however, the peak areas are not directly proportional to the number of absorbing nuclei. Thus, each of the peaks at 35.8 ppm and 26.8 ppm (generated by the two carbon atoms at the positions labeled 3 and 4, respectively, in the figure) are larger than each of the peaks at 23.1 ppm, 33.1 ppm, and 26.8 ppm (generated by the single carbon atoms at positions 1, 2, and 5, respectively) but not in an exact 2:1 ratio. The two atoms labeled at position 3 are magnetically equivalent (as are the two at position 4), because the molecule is symmetrical about a line drawn vertically through its centre.
The 13C spectrum for methylcyclohexane does not show any multiplets arising from spin-spin splitting for two different reasons. The first reason is that spin-spin coupling between two adjacent 13C atoms is so weak that it does not show up on the spectrum. This is because nearly all the 13C atoms in a molecule are bonded to more abundant 12C atoms, which do not give rise to spin-spin splitting. The second reason is that the spin-spin splitting that does occur between 13C atoms bonded to hydrogen atoms has been removed from the spectrum by an instrumental technique termed proton decoupling. Proton decoupling eliminates all the splitting patterns that would normally be observed in a 13C spectrum for all carbon atoms bonded to one or more hydrogen atoms and is done routinely to simplify the spectrum.
Analyzed alone or in combination, proton and 13C NMR spectra allow correct structures to be assigned to many organic compounds, including most isomers.





 BENGALI FOOD, WEST BENGAL, KOLKATTA

 

 
 

 

 

 

 

 


 

 

 

 

 

 
 
//////////

Saturday 13 February 2016

4 - methoxy benzoin
























/////////
TAKE A TOUR


BENGALI FOOD, WEST BENGAL, KOLKATTA, INDIA

 

.

 
 

 

 

 

 

 
 

 

 
///////////////////