DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label intermediate. Show all posts
Showing posts with label intermediate. Show all posts

Saturday 4 April 2015

(2S)-2- Oxopyrrolidin-1-yl)butanoic acid.............Key Levetiracetam intermediate




(s)-2-(2-oxopyrrolidin-1-yl)butanoic Acid
CAS No.:102849-49-0
Synonyms:
Formula:C8H13NO3
Exact Mass:171.09000


 MP 1240C ; [oc]25= -24.32 (c=l, acetone)........WO2006095362
Mp: 124–125 °C; [α] 25 D = – 24.3 (c l.0, acetone);Journal of Chemical and Pharmaceutical Research, 2012, 4(12):4988-4994



1H NMR PREDICT

 1H NMR (CDCl3, 400 MHz): δ 0.93 (t, J = 7.7 Hz, 3H), 1.67–1.76 (m, 1H), 1.99–2.13 (m, 3H), 2.49 (t, J = 7.7 Hz, 2H), 3.37 (m, J = 8.7, 5.8 Hz, 1H), 3.52-3.58 (m, 1H), 4.64 (dd, J = 10.6, 4.8 Hz, 1H);
Journal of Chemical and Pharmaceutical Research, 2012, 4(12):4988-4994

(S)-2-(2-Oxopyrrolidin-1-yl)butanoic acid NMR spectra analysis, Chemical CAS NO. 102849-49-0 NMR spectral analysis, (S)-2-(2-Oxopyrrolidin-1-yl)butanoic acid H-NMR spectrum



13 C NMR PREDICT

13C NMR (CDCl3, 125 MHz) : δ 10.8, 18.2, 21.9, 30.8, 43.9, 55.4, 173.7, 177.2;
Journal of Chemical and Pharmaceutical Research, 2012, 4(12):4988-4994 
(S)-2-(2-Oxopyrrolidin-1-yl)butanoic acid NMR spectra analysis, Chemical CAS NO. 102849-49-0 NMR spectral analysis, (S)-2-(2-Oxopyrrolidin-1-yl)butanoic acid C-NMR spectrum















Cosy predict.BELOW



SYNTHESIS AS IN PAPER










Asymmetric synthesis of chiral amines by highly diastereoselective 1,2-additions of organometallic reagents to N-tert-Butanesulfinyl Imines

 Chandra Babu K1,2*, Buchi Reddy R3 , Mukkanti K2 , Madhusudhan G1 and Srinivasulu P1
1 Inogent Laboratories (A GVK BIO Company), 28A, IDA, Nacharam, Hyderabad 500 076, India 2Centre for Pharmaceutical Sciences, JNT University, Kukatpally, Hyderabad 500 072, India
3Orchid Chemicals & Pharmaceuticals Ltd, 476/14, R&D Centre, Chennai -600 119, India __________________________________________________________________________
http://jocpr.com/vol4-iss12-2012/JCPR-2012-4-12-4988-4994.pdf


ABSTRACT We report an asymmetric synthesis of chiral amines (4S,5S)-Cytoxazone, Taxol side chain moiety and (S)- Levetiracetam starting from versatile new chiral N- sulfinimine (4). The key step, stereoselective 1,2-addition of Grignard reagent to chiral N-sulfinimine derived from (R)-glyceraldehyde acetonide and (S)-t-BSA gave the corresponding sulfonamide in high diastereoselectivity. Subsequent reactions yielded the targeted biological active and pharmaceutical important compounds with high purity (>99%) and yield

Journal of Chemical and Pharmaceutical Research, 2012, 4(12):4988-4994

 (S)-2-(2-oxopyrrolidin-1-yl)butanoic acid, 16 Potassium hydroxide (1.0 g, 0.017 mol)) was dissolved into water (18.0 ml). Tetra-n-butyl ammonium bromide (0.2 g, 0.0062 mol)) and (S)-15 (1.0 g, 0.0063 mol)) in methylene chloride (10 ml) were charged in 30 min. charged Potassium permanganate (1.5 g, 0.094 mol)). After completion of reaction filtered through a celite bed and washed with water (10.0 ml). The aqueous layer pH was adjusted to 3 using hydrochloric acid (2 ml). Added sodium phosphate (2.5 g, 0.0152 mol) and toluene (25.0 ml). The reaction mixture extracted with dichloromethane (5 x 25 ml). The organic solution was dried with (Na2SO4) distilled under vacuo to give compound 16 as oil. To the residue toluene (10 ml) was added and stirred at 0 °C for about 30 min. The solid was filtered and washed with toluene (5 ml) afford the pure compound 16 (0.83g, 76%);

Mp: 124–125 °C; [α] 25 D = – 24.3 (c l.0, acetone);


1H NMR (CDCl3, 400 MHz): δ 0.93 (t, J = 7.7 Hz, 3H), 1.67–1.76 (m, 1H), 1.99–2.13 (m, 3H), 2.49 (t, J = 7.7 Hz, 2H), 3.37 (m, J = 8.7, 5.8 Hz, 1H), 3.52-3.58 (m, 1H), 4.64 (dd, J = 10.6, 4.8 Hz, 1H);

13C NMR (CDCl3, 125 MHz) : δ 10.8, 18.2, 21.9, 30.8, 43.9, 55.4, 173.7, 177.2;


IR (CHCl3) ν max : 2975, 1731, 1620 cm–1; ESI-MS: m/z 170.0 [M- +1].


'..........................
PATENT
ROUTE FROM D-(+)-2-amino butanol 

http://www.google.im/patents/WO2006095362A1?cl=en
WO 2006/095362 
Figure imgf000003_0002


Example-2 Preparation of (S)-α-ethyl-2-oxo pyrrolidine acetic acid (IV)
Figure imgf000007_0002
A mixture of 225 g of (S)-α- ethyl -2-oxo pyrrolidine ethanol and a solution of 44.8 g of sodium carbonate in 4500 ml of water placed in a 10 litre round bottomed flask. Then 340 g of potassium permanganate is added to the reaction mixture with vigorous stirring, during 3-4 hours, cooling the mixture to 0°-5°C by immersing in a bath of ice water. Allow the reaction mixture to attain room temperature gradually. 15 hours later, filter off the precipitated manganese dioxide, concentrated the filtrate to about 1000 ml under reduced pressure and acidified with dilute sulphuric acid up to pH 2 followed by the saturation with NaCl. Cover the solution with a layer of dichloromethane. Separate the dichloromethane layer and extract the aqueous layer two to three times with 100 ml portions of dichloromethane and distilled off on rotavapor. Recrystallised the crude acid (209 g) from 210 ml of toluene; filter and wash with toluene . Yield : 130 gm (54 %) ; MP 1240C ; [oc]25= -24.32 (c=l, acetone)


Orchid Chemicals & Pharmaceuticals Ltd











Centre for Pharmaceutical Sciences, JNT University















Inogent Laboratories (A GVK BIO Company)















P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.
P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.



COCK WILL TEACH YOU NMR



COCK SAYS MOM CAN TEACH YOU NMR





Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter     
Join me on google plus Googleplus

         

 amcrasto@gmail.com




Sunday 22 March 2015

(±)-(R,S)-alpha-ethyl-2- oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide a key levetiracetam intermediate



(±)-(R,S)-alpha-ethyl-2- oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide 

methyl (±)-(R,S)-alpha-ethyl-2-oxo-l -pyrrolidine acetate with (+)-(R)-(l-phenylethyl)- amine in toluene in the presence of a base such as sodium hydride or methoxide; crystallization- induced dynamic resolution of the resultant (±)-(R,S)-alpha-ethyl-2- oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide

(R)-(+)-1-Phenylethylamine







 33978-83-5
1-​Pyrrolidineacetic acid, α-​ethyl-​2-​oxo-​, methyl ester






Ebd414139




1004767-60-5
1-​Pyrrolidineacetamide​, α-​ethyl-​2-​oxo-​N-​[(1R)​-​1-​phenylethyl]​-
(±)-(R.S)-alpha-ethyl-2-oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide


Example 1
(±)-(R,S)-alpha-ethyl-2-oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide. 

In a 100 ml reactor equipped with mechanical stirring, thermometer and bubble condenser, 13.4 g of (±)-(R,S)-alpha-ethyl-2-oxo-l-pyrrolidineacetic acid methyl ester (71.6 mmol), 8.8 g of (+)-(R)-(l-phenylethyl)-amine (72.5 mmol) and 45 ml of tetrahydrofuran were charged. 3.4 g of NaH (60% dispersion in mineral oil, 85.6 mmol) was added in small portions under nitrogen atmosphere. Reaction mixture was maintained at room temperature for about 2 h. Then, it was heated up to 350C and kept under stirring overnight. Reaction was controlled by TLC (Rf = 0.5, AcOEt/silica gel).
At reaction completed, one night at 35°C temperature, reaction mixture was cooled to room temperature and 30 ml of water was slowly charged. It was transferred into a separatory funnel and was diluted with 30 ml of water and 80 ml of dichloromethane. Phases were separated and the aqueous one was washed with 50 ml of dichloromethane. Collected organic phases were washed with an aqueous acid solution, dried on Na2SO4, filtered and concentrated under vacuum. 19.5 g of an oil residue was obtained which slowly solidified. Solid was suspended in 20 ml of a hexane/dichloromethane 9/1 v/v mixture. It was then filtered, washed with 10 ml of the same solvent mixture and dried at 400C to give 12.1 g of the title compound (44.1 mmol, 61.6% yield) as dry solid.

1H NMR (400.13 MHz, CDCl3, 25 0C): δ (ppm, TMS)
7.35-7.19 (1OH, m),
6.49 (2H, br s),
5.09-5.00 (2H, m),
4.41 (IH, dd, J = 8.3, 7.4 Hz),
4.36 (IH, dd, J = 8.6, 7.1 Hz),
3.49 (IH, ddd, J = 9.8, 7.7, 6.6 Hz),
3.41 (IH, ddd, J = 9.8, 7.7, 6.2 Hz),
3.30 (IH, ddd, J = 9.6, 8.3, 5.5 Hz),
3.13 (IH, ddd, 9.7, 8.5, 6.1 Hz), 2.47-2.38 (2H, m), 2.41 (IH, ddd, J = 17.0, 9.6, 6.3 Hz), 2.26 (IH, ddd, 17.0, 9.5, 6.6 Hz), 2.10-1.98 (2H, m), 2.01-1.89 (IH, m), 1.99-1.88 (IH, m), 1.98-1.85 (IH, m), 1.88-1.78 (IH, m), 1.75- 1.62 (IH, m), 1.72-1.59 (IH, m), 1.45 (3H, d, J = 7.1 Hz), 1.44 (3H, d, J = 7.1 Hz), 0.90 (3H, t, J = 7.4 Hz), 0.86 (3H, t, J = 7.4 Hz).  




13C NMR (100.62 MHz, CDCl3, 25 0C): δ (ppm, TMS)
176.05 (CO), 176.00 (CO), 169.08 (CO),
168.81 (CO), 143.59 (Cquat),
143.02 (Cquat), 128.66 (2 x CH), 128.55 (2 x CH),
127.33 (CH), 127.19 (CH), 126.05 (2 x CH),
125.80 (2 x CH), 56.98 (CH), 56.61 (CH),
48.90 (CH), 48.84 (CH), 44.08 (CH2),
43.71 (CH2), 31.19 (CH2), 31.07 (CH2), 22.08 (CH3),
22.04 (CH3), 21.21 (CH2), 20.68 (CH2),
18.28 (CH2), 18.08 (CH2), 10.50 (CH3), 10.45 (CH3).


Example 2 (±)-(R.S)-alpha-ethyl-2-oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide (alternative 1).
In a 500 ml reactor equipped with mechanical stirring, thermometer and condenser, 24.2 g of (+)-(R)-(l-phenylethyl)-amine (199.51 mmol) and 40 ml of toluene were charged. By keeping the reaction mixture at 00C temperature under nitrogen atmosphere, 9.5 g of NaH (60% mineral oil suspension, 237.50 mmol) was added in small portions. At the same temperature, 190.0 g of a toluene solution of (±)-(R,S)- alpha-ethyl-2-oxo-l-pyrrolidineacetic acid methyl ester (19.28% equal to 36.63 g, 197.77 mmol) was charged. Reaction mixture was then heated up to 35°C and maintained in that condition till complete disappearing of methyl ester reagent (about 14 h; checked by HPLC).
At reaction completed, reaction mixture was cooled and when room temperature was reached, 100 ml of water was slowly charged. Aqueous phases were separated and extracted with toluene (2 x 75 ml). Collected organic phases were treated with acid water till neuter pH. Solvent was evaporated and residue was suspended in about 100 ml of heptane for about 30 minutes. Product was isolated by filtration and dried in oven at 400C temperature under vacuum overnight to give 45.2 g of the title compound (164.54 mmol, 83.2% yield, d.e. 0.0%) as white dusty solid.


 Example 3
(±)-(R,S)-alpha-ethyl-2-oxo-l-pyrrolidineacet-N-(+)-(R)-(l-phenylethyl)-amide (alternative 2).
In a 500 ml reactor equipped with mechanical stirring, thermometer and Dean-Stark distiller, 24.2 g of (+)-(R)-(l-phenylethyl)-amine (199.51 mmol) and 40 ml of toluene were charged. By keeping the reaction mixture at 00C temperature, 42.7 g of sodium methoxide (30% solution in methanol, 237.14 mmol) was added under nitrogen atmosphere. At the same temperature, 190.0 g of a toluene solution of (±)- (R,S)-alpha-ethyl-2-oxo-l-pyrrolidineacetic acid methyl ester (19.28% equal to 36.63 g, 197.77 mmol) was charged. Reaction mixture was then heated up to 65- 700C and maintained in that condition till complete disappearing of methyl ester reagent (about 4 h; checked by HPLC). After a work-up carried out according to the procedure described in example 2, 40.2 g of the title compound (146.53 mmol, 74.1% yield, d.e. 0.0%) as white dusty solid was obtained.

http://www.google.com/patents/WO2008012268A1?cl=en






COCK WILL TEACH YOU NMR


COCK SAYS MOM CAN TEACH YOU NMR


DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK
Join me on twitterFollow amcrasto on Twitter     
Join me on google plus Googleplus

    

 amcrasto@gmail.com