DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Tuesday 29 November 2016

ADRAFINIL






1H NMR PREDICT


13C NMR PREDICT





Adrafinil.svg
ADRAFINIL
2-((diphenylmethyl)sulfinyl)-acetohydroxamicaci;2-((diphenylmethyl)sulfinyl)-n-hydroxy-acetamid;2-((diphenylmethyl)sulfinyl)-n-hydroxyacetamide;2-(benzhydrylsulfinyl)acetohydroxamicacid;ADRAFINIL;2-[(DIPHENYLMETHYL)SULFINYL]ACETOHYDROXAMIC ACID;CRL 40028;OLMIFON
  • CAS 63547-13-7
  • MF:C15H15NO3S
  • MW:289.35
  • EINECS:264-303-1

WATCH THIS POST AS DETAILS LIKE SYNTHESIS ARE UPDATED.............

Adrafinil is touted mainly for its stimulant properties and ability to provide alertness and wakefulness.
  • Stay up late/stay awake during normal sleeping hours: Adrafinil may be helpful for night workers who need a kick-start adapting their body’s natural circadian rhythm of wakefulness in the daytime and sleepiness in the evening to their job needs. This can also make it helpful for periodic late-night study sessions. Adrafinil is best taken in the afternoon or evening for nighttime wakefulness.
  • Boost energy, alertness, and focus during the day time: Adrafinil can also be used as an energy-boost during waking hours.
  • CONTACT SKYPE CATHERINESSPC WICKR
Adrafinil (INN) (brand name Olmifon)[2] is a discontinued wakefulness-promoting agent (or eugeroic) that was formerly used inFrance to promote vigilance (alertness), attentionwakefulnessmood, and other parameters, particularly in the elderly.[3][4] It was also used off-label by individuals who wished to avoid fatigue, such as night workers or others who needed to stay awake and alert for long periods of time. Additionally, "adrafinil is known to a larger nonscientific audience, where it is considered to be a nootropic agent."[3] Adrafinil is a prodrug; it is primarily metabolized in vivo to modafinil, resulting in very similar pharmacological effects.[3] Unlike modafinil, however, it takes time for the metabolite to accumulate to active levels in the bloodstream. Effects usually are apparent within 45–60 minutes when taken orally on an empty stomach. Adrafinil was marketed in France under the trade name Olmifon[2] until September 2011 when it was voluntarily discontinued.[4]

Pharmacology

Pharmacodynamics

Because α1-adrenergic receptor antagonists were found to block effects of adrafinil and modafinil in animals, "most investigators assume[d] that adrafinil and modafinil both serve as α1-adrenergic receptor agonists."[3] However, adrafinil and modafinil have not been found to bind to the α1-adrenergic receptor and they lack peripheral sympathomimetic side effects associated with activation of this receptor;[5] hence, the evidence in support of this hypothesis is weak, and other mechanisms are probable.[3] Modafinil was subsequently screened at a variety of targets in 2009 and was found to act as a weak, atypical blocker of the dopamine transporter(and hence as a dopamine reuptake inhibitor), and this action may explain some or all of its pharmacological effects.[6][7][8] Relative to adrafinil, modafinil possesses greater specificity in its action, lacking or having a reduced incidence of many of the common side effects of the former (including stomach painskin irritationanxiety, and elevated liver enzymes with prolonged use).[9][10][11] There is a case report of two patients that adrafinil may increase interest in sex.[3] A case report of adrafinil-induced orofacial dyskinesia exists.[12][13] Reports of this side effect also exist for modafinil.[12]

Pharmacokinetics

In addition to modafinil, adrafinil also produces modafinil acid (CRL-40467) and modafinil sulfone (CRL-41056) as metabolites, which form from metabolic modification of modafinil.

History

Adrafinil was discovered in 1974 by two chemists working for the French pharmaceutical company Laboratoires Lafon who were screening compounds in search of analgesics.[14] Pharmacological studies of adrafinil instead revealed psychostimulant-like effects such as hyperactivity and wakefulness in animals.[14] The substance was first tested in humans, specifically for the treatment of narcolepsy, in 1977–1978.[14] Introduced by Lafon (now Cephalon), it reached the market in France in 1984,[4] and for the treatment of narcolepsy in 1985.[14][15] In 1976, two years after the discovery of adrafinil, modafinil, its active metabolite, was discovered.[14] Modafinil appeared to be more potent than adrafinil in animal studies, and was selected for further clinical development, with both adrafinil and modafinil eventually reaching the market.[14] Modafinil was first approved in France in 1994, and then in the United States in 1998.[15] Lafon was acquired by Cephalon in 2001.[16] As of September 2011, Cephalon has discontinued Olmifon, its adrafinil product, while modafinil continues to be marketed.[4]

Society and culture

Regulation

Athletic doping

Adrafinil and its active metabolite modafinil were added to the list of substances prohibited for athletic competition according to World Anti-Doping Agency in 2004.[17]

New Zealand

In 2005 a Medical Classification Committee in New Zealand recommended to MEDSAFE NZ that adrafinil be classified as a prescription medicine due to risks of it being used as a party drug. At that time adrafinil was not scheduled in New Zealand.[18]

Research

In a clinical trial with clomipramine and placebo as active comparators, adrafinil showed efficacy in the treatment of depression.[3] In contrast to clomipramine however, adrafinil was well-tolerated, and showed greater improvement in psychomotor retardation in comparison.[3] As such, "further investigations of the antidepressive effects of adrafinil are warranted."[3]
/////////////
SYNTHESIS
Adrafinil (CAS NO.63547-13-7) was discovered in the late 1970s by scientists working with the French pharmaceutical company Group Lafon. First offered in France in 1986 as an experimental treatment for narcolepsy, Lafon later developed modafinil, the primary metabolite of adrafinil. Modafinil possesses greater selective alpha-1 adrenergic activity than adrafinil without the side effects of stomach pain, skin irritations, feelings of tension, and increases in liver enzyme levels.
It is important to monitor the liver of an individual using adrafinil. It can cause liver damage in some instances.
The Adrafinil with CAS registry number of 63547-13-7 is also known as 2-[(Diphenylmethyl)sulfinyl]-N-hydroxyacetamide. The IUPAC name is 2-Benzhydrylsulfinyl-N-hydroxyacetamide. It belongs to product categories of Aromatics Compounds; Aromatics; Intermediates & Fine Chemicals; Pharmaceuticals; Sulfur & Selenium Compounds. This chemical is a light pink solid and its EINECS registry number is 264-303-1. In addition, the formula is C15H15NO3S and the molecular weight is 289.35. This chemical is harmful if swallowed.
Physical properties about Adrafinil are: (1)ACD/LogP: 1.596; (2)ACD/LogD (pH 5.5): 1.60; (3)ACD/LogD (pH 7.4): 1.53; (4)ACD/BCF (pH 5.5): 9.60; (5)ACD/BCF (pH 7.4): 8.34; (6)ACD/KOC (pH 5.5): 175.52; (7)ACD/KOC (pH 7.4): 152.63; (8)#H bond acceptors: 4; (9)#H bond donors: 2; (10)#Freely Rotating Bonds: 6; (11)Index of Refraction: 1.653; (12)Molar Refractivity: 78.858 cm3; (13)Molar Volume: 215.542 cm3; (14)Polarizability: 31.262 10-24cm3; (15)Surface Tension: 67.25 dyne/cm; (16)Density: 1.342 g/cm3
Preparation of Adrafinil: it is prepared by reaction of diphenyl methyl bromide with thiourea. This reaction needs reagent NaOH. After reacting with chloroacetic acid, hydrochloric acid amine and hydrogen peroxide, the product is obtained. The yield is about 73%.
Adrafinil is prepared by reaction of diphenyl methyl bromide with thiourea.
Uses of Adrafinil: it is used as non-amphetamine-type psychostimulant and can wake up and raise awareness. For the elderly arousal disorder and depressive symptoms in symptomatic treatment.
Image result for ADRAFINIL

Image result for ADRAFINIL SYNTHESIS

Benzhydrylsulphinyl-acetohydroxamic Acid (Adrafinil)1

Diphenylmethanethiol
15.2 g (0.2 mol) of thiourea and 150 ml of demineralized water are introduced into a 500 ml three-neck flask equipped with a central mechanical stirrer, and with a dropping funnel and a condenser on the (respective) side-necks.The temperature of the reaction mixture is brought to 50°and 49.4g (0.2 mol) of bromodiphenyl- methane are added all at once whilst continuing the heating. After refluxing for about 5 minutes, the solution, which has become limpid, is cooled to 20°C and 200 ml of 2.5 N NaOH are then added dropwise whilst maintaining the said temperature. The temperature is then again kept at the reflex for 30 minutes after which, when the mixture has returned to ordinary temperature (15-25°C), the aqueous solution is acidified with 45 ml of concentrated hydrochloric acid. The supernatant oil is extracted with 250 ml of diethyl ether and the organic phase is washed with 4x80 ml of water and then dried over magnesium sulphate. 39 g of crude diphenylmethane-thiol are thus obtained. Yield 97.5%.
Benzhydryl-thioacetic acid
10 g (0.05 mol) of diphenylmethane-thiol and 2g (0.05 mol) of NaOH dissolved in 60 ml of demineralised water are introduced successively into a 250 ml flask equipped with a magnetic stirrer and a reflux condenser. The reactants are left in contact for 10 minutes whilst stirring, and a solution consisting of 7g (0.075 mol) of chloroacetic acid, 3g (0.075 mol) of NaOH pellets and 60 ml of demineralized water is then added all at once. The aqueous solution is gently warmed to about 50°C for 15 minutes, washed with 50 ml of ether, decanted and acidified with concentrated hydrochloric acid. after filtration, 10.2g of benzhydryl-thioacetic acid are thus obtained. Melting point 129-130°C. Yield 79%.
Ethyl benzhydryl-thioacetate
The following reaction mixture is heated under reflux for 7 hours: 10.2 g (0.0395 mol) of benzhydryl-thioacetic acid, 100 ml of anhydrous ethanol and 2 ml of sulphuric acid. When heating has been completed, the ethanol isevaporated in vacuo; the oily residue is taken up in 100 ml of ethyl ether and the organic solution is then washed with water, with an aqueous sodium carbonate solution and then with water until the wash waters have a neutral pH. After drying over sodium sulphate, the solvent is evaporated. 10.5g of ethyl benzhydryl- thioacetate are thus obtained. Yield 93%.
Benzhydryl-thioacetohydroxamic acid
The following three solutions are prepared:
  1. Ethyl Benzhydryl-thioacetate 10.8 g (0.0378 mol) in 40 ml methanol
  2. Hydroxylamine hydrochloride 5.25 g (0.0756 mol) in 40 ml methanol
  3. Potassium Hydroxide pellets 7.3 g (0.0134 mol) in 40 ml methanol
The solutions are heated, if necessary, until they become limpid, and when the temperatures have again fallen to below 40°C, the solution of potassium hydroxide in methanol is poured into the solution of hydroxylamine hydrochloride in alcohol. Finally, at a temperature of about 5° to 10°C, the solution of ethyl benzhydryl- thioacetate is added in its turn. After leaving the reactants in contact for 10 minutes, the sodium chloride is filtered off the limpid solution obtained is kept for about 15 hours at ordinary temperature. The methanol is then evaporated under reduced pressure, the residual oil is taken up in 100 ml of water and the aqueous solution is acidified with 3 N hydrochloric acid. The hydroxamic acid which has crystallized is filtered off, washed with water and then dried. 9.1 g of product are obtained. Yield = 87.5%. Melting point 118-120°C.

Adrafinil (CRL 40,028)

10.4g (0.038 mol) of benzhydryl-thioacetohydroxamic acid are oxidized at 40°C, over the course of 2 hours, by means of 3.8 ml (0.038 mol) of hydrogen peroxide of 110 volumes strength (33%), in 100 ml of acetic acid.
When the oxidation has ended, the acetic acid is evaporated under reduced pressure and the residual oil is taken up in 60 ml of ethyl acetate. The product which has crystallized is filtered off and then purified by recrystallisation from a 3:2 (by volume) mixture of ethyl acetate and isopropyl alcohol.
8g (73%) of Adrafinil, mp 159-160°C, are thus obtained. H2O Solubility <1 g/L.

CLIP
Image result for adrafinil nmr
Figure 2: GC/MS extracted ion chromatogram (a) and mass spectrum (b) of derivatized adrafinil in the electron ionization mode (monitoring the m/z 167, 165 and 152 ions; all the four peaks are derivatised adrafinil products).
Figure 4: LC/ESI-MS full scan chromatogram of adrafinil and its metabolites (a) (modafinil acid RT 3.8 min, adrafinil RT 4.0 min, modafinil RT 4.1 min), and LC/ESI-MS full scan mass spectra of modafinil acid (b), adrafinil (c), and (d) modafinil. (b, c and d showing the similar ions at m/z 167, 165, 152 together with the appropriate sodium and potassium adducts).
Image result for adrafinil nmr
NMR

Patent
FIG. 1 shows the structure of adrafinil and its metabolites.
FIG. 2 shows the chemical synthesis of adrafinil.
Image result for adrafinil nmr
//////////////

References

  1. Jump up^ Robertson P, Hellriegel ET (2003). "Clinical pharmacokinetic profile of modafinil". Clin Pharmacokinet42 (2): 123–37. doi:10.2165/00003088-200342020-00002.PMID 12537513.
  2. Jump up to:a b Index Nominum 2000: International Drug Directory. Taylor & Francis. January 2000. pp. 20–. ISBN 978-3-88763-075-1.
  3. Jump up to:a b c d e f g h i Milgram, Norton (1999). "Adrafinil: A Novel Vigilance Promoting Agent".CNS Drug Reviews5 (3): 193–212. doi:10.1111/j.1527-3458.1999.tb00100.x. Retrieved2 October 2014.
  4. Jump up to:a b c d AFSSAPS (2011). "Point d'information sur les dossiers discutés en commission d'AMM Séance du jeudi 1er décembre 2011 - Communiqué".
  5. Jump up^ Simon P, Chermat R, Puech AJ (1983). "Pharmacological evidence of the stimulation of central alpha-adrenergic receptors". Prog. Neuropsychopharmacol. Biol. Psychiatry7 (2-3): 183–6. doi:10.1016/0278-5846(83)90105-7PMID 6310690.
  6. Jump up^ Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH (May 2009). "Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil"The Journal of Pharmacology and Experimental Therapeutics329 (2): 738–46. doi:10.1124/jpet.108.146142.PMC 2672878Freely accessiblePMID 19197004.
  7. Jump up^ Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (Feb 2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter"Drug and Alcohol Dependence147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005PMC 4297708Freely accessiblePMID 25548026.
  8. Jump up^ Quisenberry AJ, Baker LE (Dec 2015). "Dopaminergic mediation of the discriminative stimulus functions of modafinil in rats". Psychopharmacology232 (24): 4411–9.doi:10.1007/s00213-015-4065-0PMID 26374456.
  9. Jump up^ Ballas, Christos A; Deborah Kim; Claudia F Baldassano; Nicholas Hoeh (July 2002). "Modafinil: past, present and future". Expert Review of Neurotherapeutics2 (4): 449–57.doi:10.1586/14737175.2.4.449PMID 19810941.
  10. Jump up^ Alan F. Schatzberg; Charles B. Nemeroff (2009). The American Psychiatric Publishing Textbook of Psychopharmacology. American Psychiatric Pub. pp. 850–. ISBN 978-1-58562-309-9.
  11. Jump up^ Ballas, Christos A; Kim, Deborah; Baldassano, Claudia F; Hoeh, Nicholas (2002). "Modafinil: past, present and future". Expert Review of Neurotherapeutics2 (4): 449–457.doi:10.1586/14737175.2.4.449ISSN 1473-7175PMID 19810941.
  12. Jump up to:a b Jeffrey K Aronson (31 December 2012). Side Effects of Drugs Annual: A worldwide yearly survey of new data in adverse drug reactions. Newnes. pp. 6–. ISBN 978-0-444-59503-4.
  13. Jump up^ Thobois S, Xie J, Mollion H, Benatru I, Broussolle E (2004). "Adrafinil-induced orofacial dyskinesia". Mov. Disord19 (8): 965–6. doi:10.1002/mds.20154PMID 15300665.
  14. Jump up to:a b c d e f Antonio Guglietta (28 November 2014). Drug Treatment of Sleep Disorders. Springer. pp. 212–. ISBN 978-3-319-11514-6.
  15. Jump up to:a b Jie Jack Li; Douglas S. Johnson (27 March 2013). Modern Drug Synthesis. John Wiley & Sons. pp. 2–. ISBN 978-1-118-70124-9.
  16. Jump up^ url=http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=1366624
  17. Jump up^ World Anti-Doping Agency - 2007 Prohibited List
  18. Jump up^ MCC Minutes Out of Session Meeting. Medsafe.govt.nz (2013-05-23). Retrieved on 2013-12-18.

External links

Adrafinil
Adrafinil.svg
Adrafinil.png
Clinical data
Trade namesOlmifon
AHFS/Drugs.comInternational Drug Names
Routes of administrationOral
ATC codeN06BX17 (WHO)
Legal status
Legal status
  • US: Unscheduled
Pharmacokinetic data
Bioavailability80%
Metabolism75% (Liver)
MetabolitesModafinil
Biological half-life1 hour (T1/2 is 12–15 hours for modafinil)[1]
ExcretionKidney
Identifiers
Systematic (IUPAC) name: (±)-2-Benzhydrylsulfinylethanehydroxamic acid
SynonymsCRL-40028
CAS Number63547-13-7 
PubChem (CID)3033226
DrugBankDB08925 
ChemSpider2297976 Yes
UNIIBI81Z4542G Yes
KEGGD07348 Yes
ChEMBLCHEMBL93077 Yes
Chemical and physical data
FormulaC15H15NO3S
Molar mass289.351 g/mol
3D model (Jmol)Interactive image
////////////ADRAFINIL

Sunday 27 November 2016

Improving the efficiency of the Diels-Alder process by using flow chemistry and zeolite catalysis




  • Green Chem., 2017, Advance Article
    DOI: 10.1039/C6GC02334G, Paper
    S. Seghers, L. Protasova, S. Mullens, J. W. Thybaut, C. V. Stevens
    The industrial application of the Diels-Alder reaction for the synthesis of (hetero)cyclic compounds constitutes an important challenge. To tackle the reagent instability problems and corresponding safety issues, the use of a high-pressure and zeolite catalysed microreactor process is presented.
The industrial application of the Diels–Alder reaction for the atom-efficient synthesis of (hetero)cyclic compounds constitutes an important challenge. Safety and purity concerns, related to the instability of the polymerization prone diene and/or dienophile, limit the scalability of the production capacity of Diels–Alder products in a batch mode. To tackle these problems, the use of a high-pressure continuous microreactor process was considered. In order to increase the yields and the selectivity towards the endo-isomer, commercially available zeolites were used as a heterogeneous catalyst in a microscale packed bed reactor. As a result, a high conversion (≥95%) and endo-selectivity (89 : 11) were reached for the reaction of cyclopentadiene and methyl acrylate, using a 1 : 1 stoichiometry. A throughput of 0.87 g h−1during at least 7 h was reached, corresponding to a 3.5 times higher catalytic productivity and a 14 times higher production of Diels–Alder adducts in comparison to the heterogeneous lab-scale batch process. Catalyst deactivation was hardly observed within this time frame. Moreover, complete regeneration of the zeolite was demonstrated using a straightforward calcination procedure


Improving the efficiency of the Diels–Alder process by using flow chemistry and zeolite catalysis

S. Seghers,a   L. Protasova,b   S. Mullens,b  J. W. Thybautc and   C. V. Stevens*a  
*
Corresponding authors
a
SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
E-mail: chris.stevens@ugent.be
b
VITO, Vlaamse Instelling voor Technologisch Onderzoek, Boeretang 200, 2400 Mol, Belgium
c
Laboratory for Chemical Technology, Department of Chemical Engineering and Technical Chemistry, Faculty of Engineering and Architecture, Ghent University, Technologiepark 914, 9052 Ghent, Belgium
Green Chem., 2017, Advance Article

DOI: 10.1039/C6GC02334G
http://pubs.rsc.org/en/Content/ArticleLanding/2017/GC/C6GC02334G?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract






///////////////////

A robust and recyclable polyurea-encapsulated copper(I) chloride for one-pot ring-opening/Huisgen cycloaddition/CO2 capture in water

 

 
 
 
 
Green Chem., 2016, 18,6357-6366
DOI: 10.1039/C6GC01956K, Paper
Yun Chen, Wei-Qiang Zhang, Bin-Xun Yu, Yu-Ming Zhao, Zi-Wei Gao, Ya-Jun Jian, Li-Wen Xu
One-pot ring-opening/Huisgen cycloaddition reactions combined with CO2 capture were carried out successfully in the presence of polyurea-encapsulated CuCl.
A robust and recyclable polyurea-encapsulated copper(I) chloride for one-pot ring-opening/Huisgen cycloaddition/CO2 capture in water
Yun Chen,a Wei-Qiang Zhang,a Bin-Xun Yu,a Yu-Ming Zhao,a Zi-Wei Gao,*a Ya-Jun Jiana and Li-Wen Xu*ab
*Corresponding authors
aKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
E-mail: liwenxu@hznu.edu.cn, zwgao@snnu.edu.cn
bKey Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No 1378, Wenyi West Road, Science Park of HZNU, Hangzhou 311121, P. R. China
Green Chem., 2016,18, 6357-6366
DOI: 10.1039/C6GC01956K
 
Multicomponent ring-opening/Huisgen cycloaddition reactions combined with CO2 capture with a polyurea-encapsulated copper salt as a catalyst that in situ formed from simple CuCl and soluble polyurea during the reaction were carried out successfully for the synthesis of β-hydroxytriazoles under exceptionally mild conditions, in which the polyurea-encapsulated copper(I) chloride proved to be a robust and recyclable catalyst system with high yields as well as excellent chemoselectivity in this reaction.
 
STR0.JPGstr1STR2.JPGstr3
 
str0str1str2str3
////////A robust and recyclable,  polyurea-encapsulated, copper(I) chloride,  one-pot,  ring-opening/Huisgen cycloaddition/CO2 capture in water

Wednesday 23 November 2016

Continuous-Flow Diazotization

str1

Figure
Mp: 118–120 °C. MS (M + H+): 314.

HRMS (ESI) m/z: Calcd for C16H15N3NaO4, (M + Na+): 336.0960. Found: 336.0899.

IR (KBr) ν/cm–1: 3447, 3339, 1717, 1714, 1699, 1594.

1H NMR (CDCl3, 400 MHz) δ/ppm: 8.50 (s, 1H, Ar–H), 7.88 (d, J = 8.8 Hz, 1H, Ar–H), 7.76 (d, J = 7.6 Hz, 1H, Ar–H), 7.60 (d, J = 8.0 Hz, 1H, Ar–H), 7.54 (t, J = 7.2 Hz, 1H, Ar–H), 7.41 (t, J = 7.2 Hz, 1H, Ar–H), 6.71 (d, J = 9.2 Hz, 1H, Ar–H), 6.28 (br s, 2H, −NH2), 3.91 (s, 3H, −CH3), 3.89 (s, 3H, −CH3).

13C NMR (CDCl3, 100 MHz) δ/ppm: 168.2, 168.0, 152.9, 151.6, 143.4, 131.7, 131.2, 129.4, 128.8, 128.0, 126.3, 118.9, 117.1, 109.8, 52.3, 51.9.

str1 str2 str3 str4 str5

Continuous-Flow Diazotization for Efficient Synthesis of Methyl 2-(Chlorosulfonyl)benzoate: An Example of Inhibiting Parallel Side Reactions

Zhiqun YuHei DongXiaoxuan XieJiming Liu, and Weike Su*
 National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
 Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00238
Publication Date (Web): November 17, 2016
Copyright © 2016 American Chemical Society
*Tel.: (+86)57188320899. E-mail: pharmlab@zjut.edu.cn.

Abstract

Abstract Image
An expeditious process for the highly efficient synthesis of methyl 2-(chlorosulfonyl)benzoate was described, which involved the continuous-flow diazotization of methyl 2-aminobenzoate in a three-inlet flow reactor via a cross joint followed by chlorosulfonylation in the tandem tank reactor. The side reaction such as hydrolysis was decreased eminently from this continuous-flow process even at a high concentration of hydrochloric acid. The mass flow rate of methyl 2-aminobenzoate was 4.58 kg/h, corresponding to an 18.45 kg/h throughput of diazonium salt solution. The potential of inhibiting parallel side reactions by conducting in a flow reactor was successfully demonstrated in this method.

o-Methylphenylphenylacetylene

o-Methylphenylphenylacetylene 3b
100.0 mg, 52%; oil; 
IR (film): 2360, 2335, 1599, 1571, 1493, 1455, 1379, 1157, 1103, 1069, 912, 754, 714, 689, 554, 521, 449 cm–1;
1H NMR (400 MHz, CDCl3, TMS, ppm): δ 7.45 (s, 2H), 7.41 (s, 1H), 7.25 (s, 3H), 7.14 (s, 2H), 7.07 (s, 1H), 2.431 (s, 3H); 
13C NMR (100 MHz, CDCl3, ppm): δ 140.2, 131.9, 131.6, 129.5, 128.4 (d), 128.2, 125.6, 123.6, 123.1, 93.4, 88.4, 20.8; 
MS (EI, 70 eV):m/z (%) 192(97) [M+], 191 (100) [M+ – 1], 189 (36), 65 (26); known compound (14309-60-5).(12a)
12 a) KakusawaN.YamaguchiK.KuritaJ. J. Organomet. Chem. 20056902956– 2966DOI: 10.1016/j.jorganchem.2005.03.021 






Gram-Scale Preparation of Pd@PANI: A Practical Catalyst Reagent for Copper-Free and Ligand-Free Sonogashira Couplings

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002,People’s Republic of China
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00322
Publication Date (Web): November 18, 2016
Copyright © 2016 American Chemical Society
*E-mail: yulei@yzu.edu.cn.

Abstract

Abstract Image
Palladium nanoparticles on the polyaniline (Pd@PANI) catalyst are now easily prepared on a gram scale through the oxidative polymerization of aniline in the presence of PdCl2 by using air as a clean oxidant. The material is found to be very stable and can be stored for more than one year without deactivation. Thus, it may become a commercial reagent in organic synthesis, depending on its application scopes. This article reported the first example of Pd@PANI-catalyzed Sonogashira couplings free of copper and ligands.




Monday 21 November 2016

Doxercalciferol, доксэркальциферол , دوكساركالسيفيرول , 度骨化醇

ChemSpider 2D Image | doxercalciferol | C28H44O2

doxercalciferol

  • Molecular FormulaC28H44O2
  • Average mass412.648 
доксэркальциферол [Russian] 
دوكساركالسيفيرول [Arabic] 
度骨化醇 [Chinese] 
1,3-Cyclohexanediol, 4-methylene-5-[(2E)-2-[(1R,3aS,7aR)-octahydro-7a-methyl-1-[(1R,2E,4R)-1,4,5-trimethyl-2-hexen-1-yl]-4H-inden-4-ylidene]ethylidene]-, (1R,3S,5Z)- 
54573-75-0


Title: Doxercalciferol
CAS Registry Number: 54573-75-0
CAS Name: (1a,3b,5Z,7E,22E)-9,10-Secoergosta-5,7,10(19),22-tetraene-1,3-diol
Additional Names: 1a-hydroxyvitamin D2; 1-hydroxyergocalciferol
Trademarks: Hectorol (Bone Care)
Molecular Formula: C28H44O2
Molecular Weight: 412.65
Percent Composition: C 81.50%, H 10.75%, O 7.75%
Literature References: Synthetic vitamin D prohormone. Prepn: H.-Y. P. Lam et al., Science 186, 1038 (1974); eidem, Steroids30, 671 (1977); H. E. Paaren et al., J. Org. Chem. 45, 3253 (1980). Comparative activity and toxicity: G. Sjöden et al., Proc. Soc. Exp. Biol. Med. 178, 432 (1985). Metabolism to bioactive form: J. C. Knutson et al., Endocrinology 136, 4749 (1995). Pharmacology: J. W. Coburn et al., Nephrol. Dial. Transplant. 11, Suppl. 3, 153 (1996). Clinical trial for suppression of secondary hyperparathyroidism in hemodialysis: J. M. Frazao et al., ibid. 13, Suppl. 3, 68 (1998).
Properties: Crystals, mp 138-140°. uv max (ethanol): 265 nm (e 18300). LD50 orally in rats: 3.5-6.5 mg/kg (Sjöden).
Melting point: mp 138-140°
Absorption maximum: uv max (ethanol): 265 nm (e 18300)
Toxicity data: LD50 orally in rats: 3.5-6.5 mg/kg (Sjöden)
Therap-Cat: Antihyperparathyroid.
Keywords: Antihyperparathyroid.

Image result for Doxercalciferol

CLIP



Abstract Image
Doxercalciferol (1α-hydroxyvitamin D2) is a commercially approved vitamin D derivative used to treat chronic kidney disease (CKD) patients whose kidneys cannot metabolically introduce a hydroxyl group at C1. A new process for the production of doxercalciferol from ergocalciferol was developed using a continuous photoisomerization of a known vitamin D intermediate as the key step, thus circumventing the limitations of batch photoisomerization processes. Doxercalciferol is produced in an overall yield of about 10% from ergocalciferol.

Doxercalciferol



1H NMR (CDCl3) δ 6.40 (d, 1H, J = 11.2), 6.04 (d, 1H, J = 11.2), 5.35 (s, 1H), 5.15–5.29 (m, 2H), 5.03 (s, 1H), 4.45 (dd, 1H, J = 7.3, 4.0), 4.21–4.31 (m, 1H), 2.81–2.90 (m, 1H), 2.62 (d, 1H, J = 13.3), 2.34 (dd, 1H, J = 13.3, 6.5), 1.83–2.11(m, 6H), 1.42–1.79 (m, 7H), 1.21–1.40 (m, 3H), 1.04 (d, 3H, J = 6.6), 0.94 (d, 3H, J = 6.8), 0.86 (t, 6H, J = 7.3), 0.58 (s, 3H) ppm.

str0


Doxercalciferol (trade name Hectorol) is drug for secondary hyperparathyroidism and metabolic bone disease.[1] It is a synthetic analog of ergocalciferol (vitamin D2). It suppresses parathyroid synthesis and secretion.[2]
PATENT
Image result for Doxercalciferol

CLIP
Image result for Doxercalciferol

References

  1. Jump up^ Sprague S M; Ho L T (2002). "Oral doxercalciferol therapy for secondary hyperparathyroidism in a peritoneal dialysis patient".Clinical nephrology58 (2): 155–160. PMID 12227689.
Doxercalciferol
Doxercalciferol.svg
Names
IUPAC name
(1S,3R,5Z,7E,22E)-9,10-Secoergosta-5,7,10,22-tetraene-1,3-diol
Other names
1-Hydroxyergocalciferol; 1-Hydroxyvitamin D2; 1α-Hydroxyergocalciferol; 1α-Hydroxyvitamin D2; Hectorol; TSA 840
Identifiers
54573-75-0 Yes
3D model (Jmol)Interactive image
ChEMBLChEMBL1200810 
ChemSpider4444554 Yes
DrugBankDB06410 
ECHA InfoCard100.170.997
2790
PubChem5281107
UNII3DIZ9LF5Y9 Yes
Properties
C28H44O2
Molar mass412.66 g·mol−1
Pharmacology
H05BX03 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


/////////////