DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label N-Cyclohexylpiperidine-1-carboxamide. Show all posts
Showing posts with label N-Cyclohexylpiperidine-1-carboxamide. Show all posts

Tuesday, 11 April 2017

N-Cyclohexylpiperidine-1-carboxamide

N-Cyclohexylpiperidine-1-carboxamide (7a)
Melting point: 140.2 – 141.4 ºC (lit. 140 – 141 ºC)[S1]
IR (6.3 mg/mL): νmax 3460, 2937, 2856, 1640, 1510, 1451 cm-1 ;
1H NMR: δ 6.00 (br d, J = 7.7 Hz, 1H), 3.37 (tdt, J = 11.0, 7.6, 3.9 Hz, 1H), 3.25 – 3.19 (m, 4H), 1.77 – 1.68 (m, 2H), 1.68 – 1.61 (m, 2H), 1.59 – 1.52 (m, 1H), 1.52 – 1.46 (m, 2H), 1.42 – 1.34 (m, 4H), 1.26 – 1.18 (m, 2H), 1.18 – 1.09 (m, 2H), 1.05 (qt, J = 12.1, 3.3 Hz, 1H) ppm;
13C NMR: δ 156.7, 49.1, 44.3, 33.2, 25.4, 25.3, 25.1, 24.2 ppm;
ESI-HRMS: calcd for C12H23ON2 [M+H]+ : 211.18049; found: 211.18067; delta=0.8 ppm

Synthesis of Urea Derivatives in Two Sequential Continuous-Flow Reactors

 Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
 Gedeon Richter Plc., PO Box 27, 1475 Budapest, Hungary
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00019
Abstract Image
A continuous-flow system consisting of two sequential microreactors was developed for the synthesis of nonsymmetrically substituted ureas starting from tert-butoxycarbonyl protected amines. Short reaction times could be achieved under mild conditions. In-line FT-IR analytical technique was used to monitor the reaction, including the formation of the isocyanate intermediate, thus allowing optimization of the reagent ratios. The mechanistic role of the applied base was also clarified. The setup was successfully utilized for the synthesis of several urea derivatives including the active pharmaceutical ingredient cariprazine.
References
[S1] Y. Matsumura, Y. Satoh, O. Onomura, T. Maki, J. Org. Chem. 2000, 65, 1549. doi:10.1021/jo991076k
[S2] P. Liu, Z. Wang, X. Hu, European J. Org. Chem. 2012, 2012, 1994. doi:10.1002/ejoc.201101784
////////////