DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Sunday 7 May 2017

Edaravone эдаравон, إيدارافون , 依达拉奉 ,ラジカット,




Edaravone.svg

05/05/2017
The U.S. Food and Drug Administration today approved Radicava (edaravone) to treat patients with amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig’s disease.
May 5, 2017

Release

The U.S. Food and Drug Administration today approved Radicava (edaravone) to treat patients with amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig’s disease.
“After learning about the use of edaravone to treat ALS in Japan, we rapidly engaged with the drug developer about filing a marketing application in the United States,” said Eric Bastings, M.D., deputy director of the Division of Neurology Products in the FDA’s Center for Drug Evaluation and Research. “This is the first new treatment approved by the FDA for ALS in many years, and we are pleased that people with ALS will now have an additional option.”
ALS is a rare disease that attacks and kills the nerve cells that control voluntary muscles. Voluntary muscles produce movements such as chewing, walking, breathing and talking. The nerves lose the ability to activate specific muscles, which causes the muscles to become weak and leads to paralysis. ALS is progressive, meaning it gets worse over time. The Centers for Disease Control and Prevention estimates that approximately 12,000-15,000 Americans have ALS. Most people with ALS die from respiratory failure, usually within three to five years from when the symptoms first appear.
Radicava is an intravenous infusion given by a health care professional. It is administered with an initial treatment cycle of daily dosing for 14 days, followed by a 14-day drug-free period. Subsequent treatment cycles consist of dosing on 10 of 14 days, followed by 14 days drug-free.
The efficacy of edaravone for the treatment of ALS was demonstrated in a six-month clinical trial conducted in Japan. In the trial, 137 participants were randomized to receive edaravone or placebo. At Week 24, individuals receiving edaravone declined less on a clinical assessment of daily functioning compared to those receiving a placebo.
The most common adverse reactions reported by clinical trial participants receiving edaravone were bruising (contusion) and gait disturbance.
Radicava is also associated with serious risks that require immediate medical care, such as hives, swelling, or shortness of breath, and allergic reactions to sodium bisulfite, an ingredient in the drug. Sodium bisulfite may cause anaphylactic symptoms that can be life-threatening in people with sulfite sensitivity.
The FDA granted this drug orphan drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.
The FDA granted approval of Radicava to Mitsubishi Tanabe Pharma America, Inc,
ChemSpider 2D Image | Edaravone | C10H10N2O
1-Phenyl-3-methyl-5-pyrazolone
3H-Pyrazol-3-one, 2,4-dihydro-5-methyl-2-phenyl- [ACD/Index Name]
89-25-8 [RN]
эдаравон [Russian]
إيدارافون [Arabic]
依达拉奉 [Chinese]
ラジカット,
Edaravone (brand name ラジカットRadicut) is a nootropic and neuroprotective agent used for the purpose of aiding neurological recovery following acute brain ischemia and subsequent cerebral infarction.[1] It acts as a potent antioxidant and strongly scavenges free radicals, protecting against oxidative stress and neuronal apoptosis.[2][3][4] It has been marketed solely in Japan by Mitsubishi Pharma since 2001.[1] It is also marketed in India by Edinburgh Pharmaceuticals by the brand name Arone.
On June 26, 2015, Mitsubishi Tanabe Pharma Corporation announced it has received approval to market Radicut for treatment of ALS in Japan. The phase III clinical trial began in 2011 in Japan. The company was awarded Orphan Drug Designation for Radicut by the FDA and EU in 2015. Radicut is an intravenous drug and administrated 14 days followed by 14 days drug holiday.
The biotech company Treeway is developing an oral formulation of edaravone (TW001) and is currently in clinical development. Treeway was awarded orphan drug designation for edaravone by the EMA in November 2014 and FDA in January 2015.
Edaravone has been shown to attenuate methamphetamine- and 6-OHDA-induced dopaminergic neurotoxicity in the striatum and substantia nigra, and does not affect methamphetamine-induced dopamine release or hyperthermia.[5][6] It has also been demonstrated to protect against MPTP-mediated dopaminergic neurotoxicity to the substantia nigra, though notably not to the striatum.[7][8][9]

Image result for edaravone synthesis
Edaravone (CAS NO.: 89-25-8), with other name of 3-Methyl-1-phenyl-2-pyrazolin-5-one, could be produced through many synthetic methods.
Following is one of the synthesis routes: By direct cyclization of phenylhydrazine (I) with ethyl acetoacetate (II) in refluxing ethanol.
SYNTHESIS
Edaravone, chemical name: 3-methyl-1-phenyl-2-pyrazoline-5-one, of the formula: Formula: CiciHltlN2O, molecular weight: 174.20, the formula:

Figure CN101830852BD00031
[0004] Edaravone is a brain-protecting agent (free radical scavenger). Clinical studies suggest that N- acetyl aspartate (NAA) is a specific sign of the survival of nerve cells, dramatically reducing the initial content of cerebral infarction. In patients with acute cerebral infarction Edaravone suppressed reduce peri-infarct regional cerebral blood flow, so that the first concept of days after the onset of brain NAA glycerol content than the control group significantly increased. Preclinical studies suggest that rats after ischemia / reperfusion of ischemic intravenous edaravone, can prevent the progress of cerebral edema and cerebral infarction, and relieve the accompanying neurological symptoms, suppress delayed neuronal death. Mechanism studies suggest that edaravone can scavenge free radicals, inhibiting lipid peroxidation, thereby inhibiting brain cells, endothelial cells, oxidative damage nerve cells.
For the synthesis of edaravone reported some use of benzene and methyl ethyl ketone amide corpus obtained, but methyl ethyl ketone amide difficult to obtain and slow reaction, which now has basically been abandoned; some use benzene corpus and ethyl acetoacetate in ethanol (see US4857542A, Synthesis Example 1) or water (Dykhanov NN Ethyl and butyl acetoacetates, Med Prom SSSR, 1961,15 (1):. 42-45) refluxing the reaction of the reaction The resulting purity edaravone poor, and the yield is not high, only about 70%.
Edaravone, chemical name: 2,4_-dihydro-5-methyl-2-phenyl pyrazole -3H- - one, of the formula: CiciHltlN2O, molecular weight: 174.20, the formula:
Figure CN102285920BD00031
Edaravone is a clear cerebral infarction harmful factors (free radicals), protection of new therapeutic agents for cerebral infarction nerve cells. Clinical studies have shown that N- acetyl aspartate (NAA) is a specific sign of the survival of nerve cells, dramatically reducing the initial content of cerebral infarction. When patients with acute cerebral infarction Edaravone, peri-infarct rCBF decrease has improved, and the first 28 days after the onset of brain NAA content was significantly higher than that in the control group glycerol. Mechanism studies suggest that edaravone can clear the brain is highly cytotoxic hydroxyl radicals, inhibiting the synthesis of lipids free radicals, which can suppress brain infarction after reperfusion edema, protecting brain from damage and improve nerve impairment symptoms, and the delayed neuronal death inhibition, to protect the brain.
 The first is by phenylhydrazine and methyl ethyl ketone amide (National API process compilation, 1980.737-739) condensation reaction in water at 50 ° C, a yield of up to 97%, but the raw material ketone amide ( CH3C0CH2C0NH2) are not readily available. Formula I
Edaravone synthetic route for the reaction:
Figure CN102285920BD00032
[0008] The second is to phenylhydrazine and ethyl acetoacetate in ethanol or water at reflux the reaction, sodium bisulfite as the preparation of the catalyst. From the perspective of the chemical reaction, acetyl ethyl ketone amide more than hydrazine reacted with benzene and ethyl acetoacetate more readily available, the price is cheaper, but lower reaction yield of about 70%. Formula 2 for the synthesis route Edaravone reaction formula:

Figure CN102285920BD00041
PATENT
Figure CN101830852BD00041
1 Edaravone Synthesis Example [0023] Example
[0024] (1) Weigh benzene hydrochloride corpus 13. 5g (94mmol), was added to IOOml water, stirred for 0.5 hours, sodium hydroxide was added an equimolar 3. 76g, stirred for 0.5 hours; [0025] ( 2) To the reaction solution was added dropwise ethyl acetoacetate 11. 7g (90mmol), the reaction exotherm, the reaction was heated to reflux for 2.5 hours, heating was stopped, cooled to room temperature with stirring, filtered and dried to give a pale yellow granular crude 15. 5g;
[0026] (3) The crude product was added 30ml volume ratio of 2: 1 isopropanol - water, 2g of activated carbon was added and refluxed for 1 hour, filtered hot, cooled to room temperature a white solid was precipitated to give 14 a white crystalline powder. 8g, yield 90%, mpU9 ° C, with a purity of 99.9% 0
2 Edaravone Synthesis Example [0027] Example
[0028] (1) Weigh 15g of benzene hydrochloride corpus (I (Mmmol), was added to 120ml of water and stirred for 0.5 hours, sodium hydroxide was added an equimolar 4. 16g, stirred for 0.5 hours;
[0029] (2) To the reaction solution was added dropwise 13g of ethyl acetoacetate (lOOmmol), the reaction exotherm, the reaction was heated to reflux for 2.5 hours, heating was stopped, cooled to room temperature with stirring, filtered and dried to give a pale yellow granular crude 16. 7g;
[0030] (3) The crude product was added 40ml volume ratio of 2: 1 isopropanol - water, 2. 5g of activated carbon was added and refluxed for 1 hour, filtered hot, cooled to room temperature to precipitate a white solid, as a white crystalline powder 16. lg, a yield of 88.9%, mpU8 ° C, with a purity of 99.9% 0
3 Edaravone Synthesis Example [0031] Example
[0032] (1) Weigh 22g of benzene hydrochloride corpus (152mm0l), was added to 200ml of water and stirred for 0.5 hours, sodium hydroxide was added an equimolar 6. 08g, stirred for 0.5 hours;
[0033] (2) To the reaction solution was added dropwise 19g of ethyl acetoacetate (146mm0l), the reaction exotherm, the reaction was heated to reflux for 3 hours, heating was stopped, cooled to room temperature with stirring, filtered and dried to give a pale yellow granular crude 24. Sg;
[0034] (3) The crude product was added 50ml volume ratio of 2: 1 isopropanol - water, 3g of activated carbon was added and refluxed for 1 hour, filtered hot, cooled to room temperature a white solid was precipitated to give 23 a white crystalline powder. 2g, a yield of 87. 8%, mpU8 ° C, with a purity of 99.9% 0
[0035] Comparative Example
[0036] The ethyl acetoacetate 65g (0. 5mol) and 180ml of anhydrous ethanol mixed, with stirring at 50 ° C was added dropwise benzyl corpus 54g (0. 5mol) and a solution consisting of 30ml absolute ethanol, dropwise at reflux for 2 Bi hours, ethanol was distilled off 60ml, cooled, suction filtered, washed crystals with cold absolute ethanol twice, and dried in vacuo to give pale yellow crystals 70g. Recrystallized twice from absolute ethanol to give pale yellowish white crystals 56g (yield 65%).
PATENT
Example 1: Preparation of phenylhydrazine edaravone.
[0024] a. Weigh 5.1g phenylhydrazine (47mmol), was added under stirring to water containing 45mL round-bottom flask, take appropriate concentrated hydrochloric acid solution was adjusted to pH 6.0 with PH meter.
[0025] b. To the above solution was slowly added dropwise ethyl acetoacetate 5.85g (45mmol), the reaction exotherm, was added 1.5g sodium dithionite (Na2S2O6), heated to 105 ° C to room temperature until reflux After 3h, heating was stopped, and then stirred, cooling, filtration, and dried to give a pale yellow granular edaravone crude.
[0026] c. With anhydrous ethanol recrystallization, filtration, and dried to obtain a white crystalline powder that is refined edaravone, 85% yield, 99.2% purity 0
[0027] Example 2: Preparation of phenylhydrazine hydrochloride edaravone.
[0028] a. Weigh 6.8g phenylhydrazine hydrochloride (47mmol), was added under stirring to water containing 45mL round-bottomed flask, the pH of the solution adjusted to 6.0 with aqueous ammonia.
[0029] b. To the above solution was slowly added dropwise ethyl acetoacetate 5.85g (45mmol), the reaction exotherm, 1.25g was added sodium dithionite (Na2S2O6), heated to 105 ° C to room temperature until reflux After 3h, heating was stopped, and then stirred, cooling, filtration, and dried to give a pale yellow granular edaravone crude.
[0030] c. With anhydrous ethanol recrystallization, filtration, and dried to obtain a white crystalline powder that is refined edaravone, 84% yield, with a purity of 99.2%. [0031] Comparative Example:
Under the [0032] state of agitation will phenylhydrazine 10.2g (94mmol) added to a round bottom flask equipped with IOOmL water in an appropriate amount of concentrated hydrochloric acid was dubbed the volume ratio of 1: 1 aqueous hydrochloric acid, with a PH adjusting pH of the solution was measured 6.0. After weighing Ethylacetoacetate 11.7g (90mmol) added to the reaction mixture, the reaction was exothermic and cooling to room temperature, sodium bisulfite (NaHSO3), heated to 105 ° C under reflux for 3h, the hot solution Water was added into the beaker and mechanical stirring, cooling, filtration, and dried to give the yellow edaravone crude, 73% yield, with a purity of 99.1%.
Figure CN102285920BD00042
CLIP
Edaravone:
IR (KBr) max/cm-1 : 3431, 3129, 1602, 1599, 1580;
1 H NMR (300 MHz, CDCl3): δ 7.86 (d, J = 7.5 Hz, 2H, ArH), 7.40 (m, 2H, ArH), 7.18 (m, 1H, ArH), 3.41 (d, J =0.6 Hz, 2H, CH2), 2.19 (s, 3H, CH3);
13C NMR (75 MHz, CDCl3): 170.6, 156.4, 130.1, 128.8, 125.0, 118.9, 43.1, 17.0; 1 H NMR (300 MHz, DMSO-d6): δ 11.5 (bs, 1H, NH), 7.71 (m, 2H, ArH), 7.40 (m, 2H, ArH), 7.22 (m, 1H, ArH), 5.36 (s, 1H, CH), 2.12 (s, 3H, CH3);
13C NMR (75 MHz, DMSO-d6):171.7, 158.9, 148.7, 139.2, 138.6, 129.3,125.4, 124.8, 118.4, 43.5, 17.1, 14.2.
These values are in accordance with the previous published in literature1 .
In the carbon spectrum in DMSO presented in Figure SM 4.2.3.1.8 is evident the presence of the two major tautomeric structures of edaravone, signals are identified by different colours in both structures in the figure.
Also in the IR analysis of the solid material (Figure SM 4.2.3.1.9) is possible to see either the NH form (max/cm-1, 3129), the OH form (max/cm- 1 , 3431) and the C=O (max/cm-1, 1599) of the enol and keto tautomeric forms of edaravone.
CLIP
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000600023



We have shown that the short reaction time, in combination with good yields can make microwave assisted reaction of hydrazines with β-ketoesters ideal for a rapid entry to pyrazolones. All the compounds synthesized are characterized by spectroscopic (1H NMR, IR and MS) data. While determination of tautomeric composition of compound 3 is quite challenging as eight possible tautomeric forms need to be considered, interestingly, two major tautomeric forms of compound 3a was observed in two different solvents. For example, it exists as 1,2-dihydro pyrazolone (T-1Figure 2) in DMSO and 2,4-dihydro form (T-2Figure 2) in chloroform as indicated by 1H NMR spectra (Figure 3). The olefinic proton of T-1 appeared at 5.36 δ whereas the methylene hydrogens appeared at 3.43 δ in case of T-2. Additionally, the NH proton of T-1 at 11.40 δ was not observed incase of T-2 confirmed the absence of NH in the 2,4-dihydro form. Existence of two major tautomeric forms was also observed in case compound 3b (see 1H NMR data in the experimental section). However, X-ray study on single crystal of 2-(4-chlorophenyl)-5-methyl-1,2-dihydro pyrazol-3-one (3i) indicates that 2-aryl pyrazol-3-ones e.g. 3a-b3e-f and 3i exist as 1,2-dihydro form in crystal state. 27 It is mention worthy that the aryl ring of all these 2-aryl pyrazol-3-ones remain twisted with respect to the pyrazole plane as indicated by the crystallographic data of 3i [the dihedral angle between the pyrazole and benzene ring planes was found to be 15.81 (11)º].27



5-Methyl-2-phenyl-1,2-dihydro pyrazol-3-one (3a)
mp 125-127 ºC (lit21 126-130 ºC); 
IR (KBr) νmax/cm-1: 3127, 1597, 1525, 1498, 1454;

 1H NMR (400 MHz, DMSO-d6δ 11.40 (bs, 1H), 7.71-7.69 (m, 2H), 7.42-7.38 (m, 2H), 7.21-7.18 (m, 1H), 5.36 (s, 1H), 2.10 (s, 3H); 

13C NMR (50 MHz, DMSO-d6δ 170.6, 156.2, 138.1, 128.8 (2C), 124.9, 118.9 (2C), 43.1, 16.9; 

Mass (CI, m/z) 175 (M+1, 100).

1H NMR (400 MHz, CDCl3)δ 7.85 (d, J 8.3 Hz, 2H), 7.40-7.37 (m, 2H), 7.24-7.18 (m, 1H), 3.43 (s, 2H), 2.20 (s, 3H).
21. Makhija, M. T.; Kasliwal, R. T.; Kulkarni, V. M.; Neamati, N.; Bioorg. Med. Chem. 200412, 2317.         [ Links ]
CN101830852AMar 22, 2010Sep 15, 2010海南美兰史克制药有限公司Edaravone compound synthesized by new method
CN102060771ANov 18, 2009May 18, 2011南京长澳制药有限公司Edaravone crystal form and preparation method thereof
CN102180834AMar 24, 2011Sep 14, 2011江苏正大丰海制药有限公司Preparation method for edaravone

References

  1. Jump up to:a b Doherty, Annette M. (2002). Annual Reports in Medicinal Chemistry, Volume 37 (Annual Reports in Medicinal Chemistry). Boston: Academic Press. ISBN 0-12-040537-7.
  2. Jump up^ Watanabe T, Tanaka M, Watanabe K, Takamatsu Y, Tobe A (March 2004). "[Research and development of the free radical scavenger edaravone as a neuroprotectant]"Yakugaku Zasshi (in Japanese). 124 (3): 99–111. doi:10.1248/yakushi.124.99PMID 15049127.
  3. Jump up^ Higashi Y, Jitsuiki D, Chayama K, Yoshizumi M (January 2006). "Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases". Recent Patents on Cardiovascular Drug Discovery1 (1): 85–93. doi:10.2174/157489006775244191PMID 18221078.
  4. Jump up^ Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N (2006). "Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury". CNS Drug Reviews12 (1): 9–20. doi:10.1111/j.1527-3458.2006.00009.xPMID 16834755.
  5. Jump up^ Yuan WJ, Yasuhara T, Shingo T, et al. (2008). "Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons"BMC Neuroscience9: 75. doi:10.1186/1471-2202-9-75PMC 2533664Freely accessiblePMID 18671880.
  6. Jump up^ Kawasaki T, Ishihara K, Ago Y, et al. (August 2006). "Protective effect of the radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum"European Journal of Pharmacology542 (1-3): 92–9. doi:10.1016/j.ejphar.2006.05.012PMID 16784740.
  7. Jump up^ Kawasaki T, Ishihara K, Ago Y, Baba A, Matsuda T (July 2007). "Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger, prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the substantia nigra but not the striatum"The Journal of Pharmacology and Experimental Therapeutics322 (1): 274–81. doi:10.1124/jpet.106.119206PMID 17429058.
  8. Jump up^ Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (June 2008). "Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice". Journal of Neural Transmission (Vienna, Austria : 1996)115 (6): 831–42. doi:10.1007/s00702-008-0019-6PMID 18235988.
  9. Jump up^ Yokoyama H, Yano R, Aoki E, Kato H, Araki T (September 2008). "Comparative pharmacological study of free radical scavenger, nitric oxide synthase inhibitor, nitric oxide synthase activator and cyclooxygenase inhibitor against MPTP neurotoxicity in mice". Metabolic Brain Disease23 (3): 335–49. doi:10.1007/s11011-008-9096-3PMID 18648914.

External links

Edaravone
Edaravone.svg
Edaravone ball-and-stick model.png
Clinical data
Trade namesRadicut
Routes of
administration
Oral
ATC code
  • none
Legal status
Legal status
  • Rx-only (JP)
Identifiers
SynonymsMCI-186
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard100.001.719
Chemical and physical data
FormulaC10H10N2O
Molar mass174.20 g/mol
3D model (Jmol)

////////// Radicava, edaravone, fda 2017, Lou Gehrig’s disease, amyotrophic lateral sclerosis,  Mitsubishi Tanabe, orphan drug designation89-25-8, эдаравон, إيدارافون , 依达拉奉 ,ラジカット,

O=C1CC(=NN1c1ccccc1)C

Sunday 30 April 2017

Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal

STR1
Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal
Green Chem., 2017, Advance Article
DOI: 10.1039/C6GC03140D, Paper
Jing Jin, Sandro Guidi, Zahra Abada, Zacharias Amara, Maurizio Selva, Michael W. George, Martyn Poliakoff
Solketal is derived from the reaction of acetone with glycerol, a by-product of the biodiesel industry. We demonstrate the use of NbOPO4 as a catalyst for the conversion of solketal and anilines to quinolines
STR0
STR1
STR2
str3
str4
Synthesis of 4-(quinolin-6-yl methyl)aniline (6a)
The reaction was carried out accordingly to the general procedure. The purification of 4-(quinoline-6-yl methyl)aniline 6a was carried out with a gradient of polarity from 80:20 to 30:70 (v/v) of CyHex:AcOEt as eluent. 1H NMR (400 MHz, CDCl3) δ ppm: 8.85 (dd, J=4.3,1.7Hz, 1H), 8.07 (dd, J=8.3,1.8Hz, 1H), 8.01 (d, J=9.2Hz, 1H), 7.58–7.54 (m, 2H), 7.36 (dd, J=8.3,4.2Hz, 1H), 7.02 (d, J=8.3Hz, 2H), 6.67–6.63 (m, 2H), 4.06 (s, 2H). 13C NMR (100 MHz, CDCl3) δ ppm: 149.9, 147.3, 144.9, 140.7, 135.9, 131.4, 130.6, 130.1, 129.5, 128.5, 126.6, 121.2, 115.5, 41.2. HRMS-ESI for C16H15N2 [M+H]+ calculated 235.1235, found 235.1245.


Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal

Abstract

Solketal is derived from the reaction of acetone with glycerol, a by-product of the biodiesel industry. We report here the continuous reaction of solketal with anilines over a solid acid niobium phosphate (NbP), for the continuous generation of quinolines in the well-established Skraup reaction. This study shows that NbP can catalyse all the stages of this multistep reaction at 250 °C and 10 MPa pressure, with a selectivity for quinoline of up to 60%. We found that the catalyst eventually deactivates, most probably via a combination of coking and reduction processes but nevertheless we show the promise of this approach. We demonstrate here the application of our approach to synthesize both mono- and bis-quinolines from the commodity chemical, 4,4′-methylenedianiline.

NOESY experiment of diastereomer 10α (3S, 5R) .......(3S,5R)-3-Benzyl-5-isobutyl-1,3,4,5-tetrahydro-2H-thieno[3,2-e]- [1,4]diazepin-2-one (10α)







NOESY experiment of diastereomer 10α (3S, 5R)
(3S,5R)-3-Benzyl-5-isobutyl-1,3,4,5-tetrahydro-2H-thieno[3,2-e]- [1,4]diazepin-2-one (10α):

Pale yellow solid, 50% (64.0 mg),

m.p. 66.7–67.4 °C.

[α]D 29 = –122.2 (c = 1.0, MeOH).

1 H NMR (CDCl3, 300 MHz): δ = 0.90 (d, J = 6.3 Hz, 3 H), 0.92 (d, J = 6.6 Hz, 3 H), 1.36–1.54 (m, 2 H), 1.81 (m, 1 H), 2.08 (s, 1 H), 3.13 (d, J = 5.1 Hz, 2 H), 3.93 (t, J = 5.1 Hz, 1 H), 4.67 (dd, J = 3.0, J = 9.9 Hz, 1 H), 7.15–7.30 (m, 8 H) ppm.

13C NMR (CDCl3, 75 MHz): δ = 21.48, 23.79, 24.71, 36.81, 42.09, 59.63, 73.76, 111.68, 120.97, 125.09, 126.92, 126.97, 128.70, 129.83 (2 C), 135.11, 136.90, 172.65 ppm.

LC–MS (ESI+): m/z = 315.2 [M + H]+.

HRMS: calcd. for C18H23N2OS 315.1531 [M + H]+; found 315.1531


10.1002/ejoc.201500943

///////////

Saturday 29 April 2017

2-​Thiophenecarboxylic acid, 3-​amino-​, methyl ester

Image result for 2-Thiophenecarboxylic acid, 3-amino-, methyl ester

Methyl 3-amino-2-thiophenecarboxylate

  • Molecular Formula C6H7NO2S
  • Average mass 157.190 Da
2-Thiophenecarboxylic acid, 3-amino-, methyl ester
Cas 22288-78-4
MW 157.19, MF C6 H7 N O2 S
1H NMR CDCL3
13C NMR CDCL3
IR
MASS
1H NMR PREDICT
13C NMR PREDICT
SYNTHESIS 1

By Pokhodylo, Nazariy T. et alFrom Synthetic Communications, 44(7), 1002-1006; 2014
2-Propenenitrile, 3-chloro-, CAS : 871-29-4
SYNTHESIS 2
Rxn NaOMeMeOH, 0°C
Methyl thioglycolate, CAS: 2365-48-2
C3 H2 Cl N
2-Propenenitrile, 2-chloro- OR 2-chloroacrylonitrile
920-37-6
By Denoyelle, Severine et alFrom European Journal of Organic Chemistry, 2015(32), 7146-7153; 2015
 
 
SYNTHESIS 2 B
Various Annellated Thieno [4,5]imidazo[2,1-b]thiazol-6-acetic Acids
By Schnatt, HeinzFrom No pp.; 1987

Step 1

3-Amino-2-thiophenecarboxylic acid methyl ester, hydrochloride (1):
 
202.5 g (3.75 mol) sodium methoxide was dissolved in 1000 mL absolute methanol and cooled to 20 degC. Subsequently, 159.2 g (1.50 mol) thioglycolic acid methyl ester was added dropwise within 10 minutes, while the temperature was increased to 26 degC. Then 131.3 g (1.50 mol) 2-chloroacrylonitrile was added dropwise within 2.5 hours, while the temperature was kept between 24 and 26 degC by water cooling. It was stirred for 30 minutes. By addition of 130 mL of glacial acetic acid, the mixture was neutralized (pH = 6), filtered over Hyflo and the solution was largely concentrated in vacuum. The residue was partitioned between 800 mL water and 400 mL ether and the aqueous phase was extracted three times with a total of 400 mL ether. The combined organic layers were dried over magnesium sulfate and filtered. Dry HCl gas was passed into this solution for 20 minutes. The precipitate was extracted three times with 100 mL dry ether and dried (50 degC/20 mbar). Yield: 172.3 g of yellowish crystals (60 % of theory). mp 128-129 degC. TLC: solvent: Bz:Et2O = 3:1, Rf = 0.7.

 

Step 2

3-Amino-2-thiophenecarboxylic acid methyl ester (2):
 
291.4 g (1.50 mol) 3-amino-2-thiophencarboxylic acid methyl ester, hydrochloride (1) were suspended in 875 mL methylene chloride and brought to pH = 9 with saturated sodium hydrogen carbonate solution. The reaction mixture was stirred until the completion of gas evolution. The phases were separated and the aqueous phase was extracted with a total of 500 mL methylene chloride. The combined organic layers were dried over sodium sulfate, filtered and evaporated. Yield: 221.7 pale yellow crystals (95 % of theory). mp 65-66 degC. LTC: solvent: Bz:Et2O = 3:1, Rf = 0.7.
 
SYNTHESIS  3
Me thioglycolate and 2-chloroacrylonitrile, and catalyzed by sodium methoxide.
2-chloroacrylonitrile:Me thioglycolate:sodium methoxide=1:1.2:3.3, reaction temp.=25-30°C and t=4h, and using sodium methoxide as Cat, the yield of 3-amino-2-thiophenecarboxylate was 88.2%
Guangdong Huagong, 39(7), 65, 42; 2012
 
Synthesis 4
Synthesis 2010(9): 1428-1430
DOI: 10.1055/s-0029-1218697
R = METHYL,  THEN USE METHANOL AND SODIUM METHOXIDE
 
Paper
 
Bioorganic and Medicinal Chemistry, 2014, vol. 22,  7, p. 2113 - 2122
 
PAPER
Formation of stabilized organochlorogermylamines by the chelating organic substituent, 3-amino-2-methylthiophoate
Journal of Organometallic Chemistry (1991), 409, (1-2), 131-41.
 
PAPER
Structural modification of diketo acid portion in 1H-benzylindole derivatives HIV-1 integrase inhibitors
Heterocycles (2009), 78, (4), 947-959.
 
PATENT
GB 837086 1960
 str1
Treating 24.8 g. ClCH2CHClCN with 31.8 g. thioglycollic acid Me ester in the presence of 29.2 g. NaOMe and 280 cc. Et2O gave 72% Me ester of 3-aminothiophene-2-carboxylic acid (I), b0.1 100-2°, m. 65.5°;
 str1
 
SYNTHESIS
Synthesis of methyl 5-chloro-3-(methylaminosulfonyl)thiophene-2-carboxylate
Faming Zhuanli Shenqing Gongkai Shuomingshu (2008),
NaOMeMeOH, < 20°C; 30-60 min, < 20°C
10-15°C; 4 h, 10-15°C, ..........H2O, cooled
 
 
///////

Cellulose acetate as a convenient intermediate for the preparation of 5-acetoxymethylfurfural from biomass

Cellulose acetate as a convenient intermediate for the preparation of 5-acetoxymethylfurfural from biomass

Abstract

5-Acetoxymethylfurfural (AMF) is an important biomass derived platform chemical related to 5-hydroxymethylfurfural. Such furanic compounds can be produced via the hydrolysis of cellulose followed by dehydration of the resulting glucose units. However, the integration of these reactions in a single process remains technically challenging, and the direct use of monosaccharides is often preferred. In this work we report a new method for the synthesis of AMF based on the acetolysis of cellulose acetate in the presence of sulfuric acid. The strategy was optimized for both batch and continuous processing. Furthermore, cellulose acetate prepared by direct wood acetylation could be successfully applied as a precursor, proving the method as a robust solution for integrated biomass processing.
 

Cellulose acetate as a convenient intermediate for the preparation of 5-acetoxymethylfurfural from biomass

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC00975E, Communication
Open Access Open Access
Creative Commons Licence  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Llorenc Gavila, Davide Esposito
A new method for the synthesis of AMF based on the acetolysis of cellulose acetate is reported. Cellulose acetate prepared by wood acetylation can be applied as a precursor, offering possibilities for integrated biomass processing
 
Cellulose acetate synthesis from cellulose In a round bottom flask, cellulose (2 g, 12 mmol) was suspended in acetic acid (35 mL) and stirred for 1 hour at 55 °C. Thus, a mixture of acetic anhydride (10 mL, 105 mmol) and sulfuric acid (0.4 mL, 7.5 mmol) was slowly added, while the mixture was kept at 55 °C for 2 hours3 . The mixture was thus poured into cold water, the precipitate was filtered, washed and dried at 40 °C in a vacuum oven.
 
Cellulose acetate synthesis from pulp or wood In a round bottom flask, 2 g of wood or pulp were suspended in acetic acid (35 mL) and stirred for 1 hour at 55 °C. Thus, a mixture of acetic anhydride (10 mL, 105 mmol) and sulfuric acid (0.4 mL, 7.5 mmol) was slowly added, while the mixture was kept at 55 °C for 2 hours3 . The mixture was poured into cold water, the precipitate was filtered, washed and dried at 40 °C in a vacuum oven. In order to purify the cellulose acetate, the precipitate was stirred in dichloromethane (30 mL) at 30 °C for 1 hour; afterwards 2/3 of the solvent was evaporated with a rotary evaporator and poured into 20 mL of ethanol, the precipitate was washed with ethanol and dried at 40 °C in a vacuum oven.
 
General procedure for the acetolysis of cellulose acetate Solutions of cellulose acetate in acetic acid were prepared under the approximation that all cellulose acetate is composed of triacetylated anhydroglucose units (molar mass: 288 g/mol). The following molarities (mM) and the number of equivalents are therefore calculated with respect to triacetylated anhydroglucose units. Briefly, the corresponding amount of cellulose acetate to reach a final concentration of 5 g/L (17.4 mM) of cellulose acetate were dissolved in acetic acid and 35 mM of acetic anhydride (2 eq) and 35 mM of acid (2 eq) was added each run, unless otherwise stated. (The same procedure was adapted for non-acetylated cellulose [molar mass: 162 g/mol] as control experiment).

Synthesis of ureas in the bio-alternative solvent Cyrene

 

Synthesis of ureas in the bio-alternative solvent Cyrene

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC00908A, Communication
Liam Mistry, Kopano Mapesa, Thomas W. Bousfield, Jason E. Camp
The bio-alternative solvent Cyrene was shown to be an alternative to toxic oil-derived solvents for the synthesis of ureas.
N-Phenylpyrrolidine-1-carboxamide (6a) 1
 
Method A: To a stirred solution of pyrrolidine (42 µL, 0.5 mmol) in Cyrene (0.5 mL, 1 M) at 0 °C was added phenyl isocyanate (4a, 55 µL, 0.5 mmol). The resultant mixture was allowed to warm to r.t. over 1 h. Water (5 mL) was added and the mixture was stirred for 30 min. The solvent was removed by Buchner filtration and the filtrate was washed with water (60 mL). The residue was dissolved in EtOAc (20 mL), dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure to give N-phenylpyrrolidine-1-carboxamide (6a, 76 mg, 80%), as a white solid.
Method B: To a stirred solution of pyrrolidine (42 µL, 0.5 mmol) in Cyrene (0.5 mL, 1 M) at 0 °C was added phenyl isocyanate (4a, 55 µL, 0.5 mmol). The resultant mixture was allowed to warm to r.t. over 1 h. Water (5 mL) was added and the mixture was stirred for 30 min. Water (25 mL) and EtOAc (25 mL) were added. The organic layer was dried over MgSO4 (10.0 g), filtered with the aid of EtOAc (10 mL). Silica gel (100 mg) was added and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (100 g; EtOAc:hexane, 9:1) to to give N-phenylpyrrolidine-1- carboxamide (6a, 92 mg, 97%), as a white solid. mp. (o C) 133-134 [Lit.1 133-134];
 
IR (neat): 3292, 2971, 2871, 1639, 1532, 1438, 1373, 1239, 759 cm-1 ;
 
1 H NMR (CDCl3, 500 MHz) δ 1.92-1.94 (m, 4H), 3.42-3.45 (m, 4H), 6.29 (br. s, 1H), 6.98-7.01 (m, 1H), 7.24-2.28 (m, 2H), 7.40-7.42 (m, 2H);
 
13C NMR (CDCl3, 125 MHz) δ 25.5, 45.7, 119.5, 122.6, 128.7, 139.2, 153.9;
 
HRMS (ESI) m/z Calcd for [C11H15N2O] + 191.1184; found 191.1179.

Synthesis of ureas in the bio-alternative solvent Cyrene

Abstract

Cyrene as a bio-alternative solvent: a highly efficient, waste minimizing protocol for the synthesis of ureas from isocyanates and secondary amines in the bio-available solvent Cyrene is reported. This method eliminated the use of toxic solvents, such as DMF, and established a simple work-up procedure for removal of the Cyrene, which led to a 28-fold increase in molar efficiency versus industrial standard protocols.
Graphical abstract: Synthesis of ureas in the bio-alternative solvent Cyrene
. References 1 Y. Wei, J. Liu, S. Lin, H. Ding, F. Liang and B. Zhao, Org. Lett., 2010, 12, 4220-4223.
////////////

Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: a convenient access to 3-ethyl-3-methyl oxindoles

Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: a convenient access to 3-ethyl-3-methyl oxindoles

Org. Biomol. Chem., 2017, Advance Article
DOI: 10.1039/C7OB00779E, Paper
Zuguang Xie, Pinhua Li, Yu Hu, Ning Xu, Lei Wang
An efficient synthesis of 3-ethyl-3-methyl oxindoles by visible-light promoted and iron-catalyzed difunctionalization of N-arylacrylamides with dimethyl sulphoxide was developed

Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: a convenient access to 3-ethyl-3-methyl oxindoles

Abstract

A visible-light-induced and iron-catalyzed methylation of arylacrylamides by dimethyl sulphoxide (DMSO) is achieved, leading to 3-ethyl-3-methyl indolin-2-ones in high yields. This reaction tolerates a series of functional groups, such as methoxy, trifluoromethyl, cyano, nitro, acetyl and ethyloxy carbonyl groups. The visible-light promoted radical methylation and arylation of the alkenyl group are involved in this reaction.
Graphical abstract: Visible-light-induced and iron-catalyzed methylation of N-arylacrylamides with dimethyl sulphoxide: a convenient access to 3-ethyl-3-methyl oxindoles
str1 str2
 
//////