DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Tuesday, 25 November 2014

Assignment of homonuclear spectra

The principle process of homonuclear sequential assignment was developed by Kurt Wüthrich and coworkers. Experiments as 2D COSY and TOCSY are employed for the identification of amino acid spin systems (blue arrows). The 2D NOESY experiment is used to sequentially connect the spin systems (red arrows).

Sequential assignment principle
The fist step in sequential assignment is the identification of certain amino acids, with a characteristic pattern of cross signals, i.e. of glycine, alanine, threonine, valine, leucine and isoleucine.

Spin Systems of Glycine and Valine
Glycine (left picture) contains two Halpha protons and is therefore readily identified. Valine (right picture), leucine and isoleucine can be recognized by their two methyl groups which give a characteristic row of double signals between 0 and 1.5 ppm. In the same way, alanine and threonine are identified by their single methyl groups.

NOESY Connectivities
In the second stage of the assignment process, the sequential contacts from the already identified amino acids to the neighboring ones are searched for in the 2D NOESY spectra. The connectivity of a given amino acid in the sequence (i) to its following one (i+1) can be observed in the NOESY because the distance of the amide proton of (i+1) to the Halpha, Hbeta or Hgamma protons of (i) is smaller than 5 A in almost every case (left picture). Therefore, sequential cross signals to Halpha(i), Hbeta(i) etc. are observed at the frequency of HN(i+1) (right picture, dark blue signals). These interresidual cross signals can be distinguished from the intraresidual ones by comparing the 2D NOESY with the 2D TOCSY spectrum. A series of these sequential cross signals between Halpha(i) and HN(i+1) determines the order (i, i+1, i+2,...) of the amino acid spin systems.
Thus, dipeptides are identified and subsequently prolonged to oligopeptides by the search for further sequential contacts. Some time along the line these oligopeptides can be placed at a unique place in the primary structure by comparison with the amino acid sequence of the protein - they are sequentially assigned.
The chain of sequential connectivites is interrupted by proline residues because these have no amide proton. Therefore, no HN(i)-Halpha(i-1) cross signal can be observed. However, if the proline (i) is in itstrans conformation, the sequential HN(i-1)-Hdelta(i) and Halpha(i-1)-Hdelta(i) cross signals can be observed.
Another problem is, that this approach of sequential assignment breaks down for larger proteins because the vast number of signals leads to spectral overlap which hinders the identification of signals.

No comments:

Post a Comment