DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution
Showing posts with label structure. Show all posts
Showing posts with label structure. Show all posts

Saturday 31 October 2015

Computed NMR spectra predicts the structure of Nobilisitine A

Nobilisitine A was isolated by Evidente and coworkers, who proposed the structure 1.1 Banwell and co-workers then synthesized the enantiomer of 1, but its NMR did not correspond to that of reported for Nobilisitine A.; the largest differences are 4.7 ppm for the 13C NMR and 0.79 ppm for the 1H NMR.2

1
Lodewyk and Tantillo3 examined seven diastereomers of 1, all of which have a cis fusion between the saturated 5 and six-member rings (rings C and D). Low energy conformations were computed for each of these diasteromers at B3LYP/6-31+G(d,p). NMR shielding constants were then computed in solvent (using a continuum approach) at mPW1PW91/6-311+G(2d,p). A Boltzmann weighting of the shielding contants was then computed, and these shifts were then scaled as described by Jain, Bally and Rablen4 (discussed in this post). The computed NMR shifts for 1 were compared with the experimental values, and the mean deviations for the 13C and 1H svalues is 1.2 and 0.13 ppm, respectively. (The largest outlier is 3.4 ppm for 13C and 0.31 for 1H shifts.) Comparison was then made between the computed shifts of the seven diasteomers and the reported spectrum of Nobilisitine A, and the lowest mean deviations (1.4 ppm for 13C and 0.21 ppm for 1H) is for structure 2. However, the agreement is not substantially better than for a couple of the other diasteomers.

2
They next employed the DP4 analysis developed by Smith and Goodman5 for just such a situation – where you have an experimental spectrum and a number of potential diastereomeric structures. (See this post for a discussion of the DP4 method.)The DP4 analysis suggests that 2 is the correct structure with a probability of 99.8%.
Banwell has now synthesized the compound with structure 2 and its NMR matches that of the original natural product.6 Thus Nobilisitine A has the structure 2.

References

(1) Evidente, A.; Abou-Donia, A. H.; Darwish, F. A.; Amer, M. E.; Kassem, F. F.; Hammoda, H. A. m.; Motta, A., "Nobilisitine A and B, two masanane-type alkaloids from Clivia nobilis,"Phytochemistry, 1999, 51, 1151-1155, DOI: 10.1016/S0031-9422(98)00714-6.
(2) Schwartz, B. D.; Jones, M. T.; Banwell, M. G.; Cade, I. A., "Synthesis of the Enantiomer of the Structure Assigned to the Natural Product Nobilisitine A," Org. Lett., 2010, 12, 5210-5213, DOI:10.1021/ol102249q
(3) Lodewyk, M. W.; Tantillo, D. J., "Prediction of the Structure of Nobilisitine A Using Computed NMR Chemical Shifts," J. Nat. Prod., 2011, 74, 1339-1343, DOI: 10.1021/np2000446
(4) Jain, R.; Bally, T.; Rablen, P. R., "Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets," J. Org. Chem., 2009, DOI:10.1021/jo900482q.
(5) Smith, S. G.; Goodman, J. M., "Assigning Stereochemistry to Single Diastereoisomers by GIAO NMR Calculation: The DP4 Probability," J. Am. Chem. Soc., 2010, 132, 12946-12959, DOI:10.1021/ja105035r
(6) Schwartz, B. D.; White, L. V.; Banwell, M. G.; Willis, A. C., "Structure of the Lycorinine Alkaloid Nobilisitine A," J. Org. Chem., 2011, ASAP, DOI: 10.1021/jo2016899




a tour

MYSORE, KARNATAKA, INDIA
Map of mysore




































////////////

1-Adamantyl cation – Predicting its NMR spectra

1-Adamantyl cation – Predicting its NMR spectra

What is required in order to compute very accurate NMR chemical shifts? Harding, Gauss and Schleyer take on the interesting spectrum of 1-adamantyl cation to try to discern the important factors in computing its 13C and 1H chemical shifts.1

1
To start, the chemical shifts of 1-adamtyl cation were computed at B3LYP/def2-QZVPP and
MP2/qz2p//MP2/cc-pVTZ. The root means square error (compared to experiment) for the carbon chemical shifts is large: 12.76 for B3LYP and 6.69 for MP2. The proton shifts are predicted much more accurately with an RMS error of 0.27 and 0.19 ppm, respectively.
The authors speculate that the underlying cause of the poor prediction is the geometry of the molecule. The structure of 1 was optimized at HF/cc-pVTZ, MP2/cc-pVTZ and CCSD(T)/pVTZ and then the chemical shifts were computed using MP2/tzp with each optimized geometry. The RMS error of the 12C chemical shifts are HF/cc-pVTZ: 9.55, MP2/cc-pVTZ: 5.62, and CCSD(T)/pVTZ: 5.06. Similar relationship is seen in the proton chemical shifts. Thus, a better geometry does seem to matter. The CCSD(T)/pVTZ optimized structure of 1 is shown in Figure 1.

1
Figure 1. CCSD(T)/pVTZ optimized structure of 1.
Unfortunately, the computed chemical shifts at CCSD(T)/qz2p//CCSD(T)/cc-pVTZ are still in error; the RMS is 4.78ppm for the carbon shifts and 0.26ppm for the proton shifts. Including a correction for the zero-point vibrational effects and adjusting to a temperature of 193 K to match the experiment does reduce the error; now the RMS for the carbon shifts is 3.85 ppm, with the maximum error of 6 ppm for C3. The RMS for the proton chemical shifts is 0.21ppm.
The remaining error they attribute to basis set incompleteness in the NMR computation, a low level treatment of the zero-point vibrational effects (which were computed at HF/tz2p), neglect of the solvent, and use of a reference in the experiment that was not dissolved in the same media as the adamantyl cation.
So, to answer our opening question – it appears that a very good geometry and treatment of vibrational effects is critical to accurate NMR shift computation of this intriguing molecule. Let the
computational chemist beware!

References

(1) Harding, M. E.; Gauss, J.; Schleyer, P. v. R., "Why Benchmark-Quality Computations Are Needed To Reproduce 1-Adamantyl Cation NMR Chemical Shifts Accurately," J. Phys. Chem. A, 2011, 115, 2340-2344, DOI: 10.1021/jp1103356













//////////

Thursday 18 December 2014

Structure, mechanism and exchange processes in molecules


Structure, mechanism and exchange processes in molecules

Using NMR spectroscopy as our primary tool, backed up wuth computational methods, structures of compounds and the mechanism of fluxional processes is explored. A couple of examples one each from inorganic and organic chemistry are shown below.
  • Hydrides and dihydrogen complexes
Metal hydride complexes are well known to be excellent catalysts for hydrogenation reactions and have the potential to act as hydrogen storage materials. Dihydrogen complexes contain a hydrogen molecule that is essentially intact but acting as a ligand. We have an ongoing interest in these classes of compounds. We are interested in answering questions such as can we accurately determine the location of the hydrogen atoms in such molecules and interatomic distances? This can be difficult using crystallographic methods.
Hydride and dihydrogen complexes also often show interesting mechanisms of fluxionality, i.e., the hydrogen atoms interchange their positions within the complexes. NMR is ideally suited to revealing how these molecular reorientations take place.
2D NMR spectrum of Re-Ru complexstructure and labeling of Re-Ru complex
Studying exchange in a polyhydride complex
  • Photochromic organic compounds
Building on some high profile work led by the CSIRO, we have studied certain merocyanine molecules, similar to the type found in shade-changing photochromic lenses of spectacles. We have shown that a relatively rapid isomerization of different isomers can occur and that this process is catalyzed by acid.
acid catalysed isomerization of a photomerocyanine
Elucidating an acid catalysed isomerization process in a photomerocyanine compound at -80 °C.
We are currently investigating several other photochemically generated organic reactive intermediates with NMR spectroscopy at low temperatures.
References:
Yee, L. H.; Hanley, T.; Evans, R. A.; Davis, T. P.; Ball, G. E. "Photochromic Spirooxazines Functionalized with Oligomers: Investigation of Core-Oligomer Interactions and Photomerocyanine Isomer Interconversion Using NMR Spectroscopy and DFT" J. Org. Chem. 2010, 75, 2851-2860.
Evans, R.A; Hanley, T.L.; Skidmore, M.A.; Davis, T.P.; Such, G.K.; Yee, L.H; Ball, G.E.; Lewis, D.A. "Lubrication and Control of Nano-Mechanical Processes in Polymers." Nature Materials, 2005, 4, 193.

















 
 amcrasto@gmail.com



http://newdrugapprovals.org/

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO

 
 amcrasto@gmail.com


http://newdrugapprovals.org/

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO


Sunday 21 July 2013

Computed NMR spectra predicts the structure of Nobilisitine A


Nobilisitine A was isolated by Evidente and coworkers, who proposed the structure 1.1 Banwell and co-workers then synthesized the enantiomer of 1, but its NMR did not correspond to that of reported for Nobilisitine A.; the largest differences are 4.7 ppm for the 13C NMR and 0.79 ppm for the 1H NMR.2

1
Lodewyk and Tantillo3 examined seven diastereomers of 1, all of which have a cis fusion between the saturated 5 and six-member rings (rings C and D). Low energy conformations were computed for each of these diasteromers at B3LYP/6-31+G(d,p). NMR shielding constants were then computed in solvent (using a continuum approach) at mPW1PW91/6-311+G(2d,p). A Boltzmann weighting of the shielding contants was then computed, and these shifts were then scaled as described by Jain, Bally and Rablen4 (discussed in this post). The computed NMR shifts for 1 were compared with the experimental values, and the mean deviations for the 13C and 1H svalues is 1.2 and 0.13 ppm, respectively. (The largest outlier is 3.4 ppm for 13C and 0.31 for 1H shifts.) Comparison was then made between the computed shifts of the seven diasteomers and the reported spectrum of Nobilisitine A, and the lowest mean deviations (1.4 ppm for 13C and 0.21 ppm for 1H) is for structure 2. However, the agreement is not substantially better than for a couple of the other diasteomers.

2
They next employed the DP4 analysis developed by Smith and Goodman5 for just such a situation – where you have an experimental spectrum and a number of potential diastereomeric structures. (See this post for a discussion of the DP4 method.)The DP4 analysis suggests that 2 is the correct structure with a probability of 99.8%.
Banwell has now synthesized the compound with structure 2 and its NMR matches that of the original natural product.6 Thus Nobilisitine A has the structure 2.

References

(1) Evidente, A.; Abou-Donia, A. H.; Darwish, F. A.; Amer, M. E.; Kassem, F. F.; Hammoda, H. A. m.; Motta, A., "Nobilisitine A and B, two masanane-type alkaloids from Clivia nobilis,"Phytochemistry, 1999, 51, 1151-1155, DOI: 10.1016/S0031-9422(98)00714-6.
(2) Schwartz, B. D.; Jones, M. T.; Banwell, M. G.; Cade, I. A., "Synthesis of the Enantiomer of the Structure Assigned to the Natural Product Nobilisitine A," Org. Lett., 2010, 12, 5210-5213, DOI:10.1021/ol102249q
(3) Lodewyk, M. W.; Tantillo, D. J., "Prediction of the Structure of Nobilisitine A Using Computed NMR Chemical Shifts," J. Nat. Prod., 2011, 74, 1339-1343, DOI: 10.1021/np2000446
(4) Jain, R.; Bally, T.; Rablen, P. R., "Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets," J. Org. Chem., 2009, DOI:10.1021/jo900482q.
(5) Smith, S. G.; Goodman, J. M., "Assigning Stereochemistry to Single Diastereoisomers by GIAO NMR Calculation: The DP4 Probability," J. Am. Chem. Soc., 2010, 132, 12946-12959, DOI:10.1021/ja105035r
(6) Schwartz, B. D.; White, L. V.; Banwell, M. G.; Willis, A. C., "Structure of the Lycorinine Alkaloid Nobilisitine A," J. Org. Chem., 2011, ASAP, DOI: 10.1021/jo2016899