DR ANTHONY MELVIN CRASTO,WorldDrugTracker, helping millions, A 90 % paralysed man in action for you, I am suffering from transverse mylitis and bound to a wheel chair, With death on the horizon, nothing will not stop me except God................DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 25Yrs Exp. in the feld of Organic Chemistry,Working for GLENMARK GENERICS at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution

Friday, 21 July 2017

(S)-5-fluoro-3-methylisobenzofuran-1(3H)-one

str1
Preparation of (S)-5-Fluoro-3-methylisobenzofuran-1(3H)-one (6)
To a ................... Purity 99.9%, ee > 99.9%.
 
1H NMR (400 MHz, CDCl3): δ 7.88 (dd, J = 4.8, 8.4 Hz, 1 H), 7.21 (ddd, J = 2.0, 8.4, 8.8 Hz, 1 H), 7.12 (dd, J = 2.0, 8.8 Hz, 1 H), 5.53 (q, J = 6.4 Hz, 1 H), 1.63 (d, J = 6.4 Hz, 3 H) ppm;
 
13C NMR (100.6 MHz, CDCl3): δ 169.1, 166.5 (d, JCF = 256.6 Hz), 153.8 (d, JCF = 9.1 Hz), 128.0 (d, JCF = 10 Hz), 121.8, 117.2 (d, JCF = 24.1 Hz), 108.9 (d, JCF = 25.2 Hz), 77.0, 20.2 ppm;
 
19F NMR (376.5 MHz, CDCl3): δ −102.8 ppm.
 
HRMS: Calcd for C9H8O2F (M + H)+: 167.0503. Found: 167.0497.
Developing an Asymmetric Transfer Hydrogenation Process for (S)-5-Fluoro-3-methylisobenzofuran-1(3H)-one, a Key Intermediate to Lorlatinib
Chemical Research and Development and Analytical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00187
 
 
Abstract Image
Synthesis of (S)-5-fluoro-3-methylisobenzofuran-1(3H)-one (6), a key intermediate to lorlatinib, is described. A few synthetic methodologies, that is, boron reduction, enzymatic reduction, asymmetric hydrogenation, and asymmetric transfer hydrogenation, were evaluated for the chiral reduction of the substituted acetophenone intermediate (8). A manufacturing process, on the basis of the asymmetric transfer hydrogenation, was developed. This process was successfully scaled up to prepare 400 kg of 6.
str1 str2 str3 str4
1H AND 13C NMR PREDICT

No comments:

Post a Comment