Fig. 3.
Data Set 1
Shown here are the NMR chemical shift and multiplicities data on product 1.
NMR data on C18.3w3 Anabaena product 1 methyl ester, 600 MHz, d6-benzene at 7.16 ppm.
d 5.39, dd, J11,12 = 15.5 Hz, J12,13 = 8.2 Hz, 1H, H12; d 5.34, dd, J10,11 = 7.1 Hz, J11,12 = 15.4 Hz, 1H, H11; d3.36, s, 3H, OCH3; d 2.94, dd, J9,10 = 2.0 Hz, J10,11 = 7.1 Hz, 1H, H10; d 2.64, dt, J8,9 = 5.6 Hz, J9,10 = 2.0 Hz, 1H, H9; d 2.36, d, J12,13 = 8.2 Hz, 1H, H13; d 2.10, t, J2,3 = 7.4 Hz, 2H, H2; d 1.91, m, J = 3.6 Hz, 1H, H16; d 1.53, q, J = 7.4 Hz, 2H, H3; d 1.37, m, 2H, H8; d 1.31 and 1.34, two dd, J(14,15) »11 Hz, J(14,16) »3 Hz, 2H, H14, H15†; d 1.29-1.35, m, H7a; d 1.20-1.28, m, 1H, H7b; d 1.16, q, J16,17 = J17,18 = 7.3 Hz, 2H, H17; d 1.06-1.16, m, 6H, H4, H5, H6; d 0.87, t, J17,18 = 7.4 Hz, 3H, H18.
†The two dd signals represent H14 and H15, although they are not individually assigned.
Data Set 2
Shown here are the NMR chemical shift and multiplicities data on product 2.
1H-NMR on product 2 methyl ester, the C18.3w3 LTA-type epoxide, 9R,10R-trans-epoxyoctadeca-11E,13E,15Z-trienoic acid. 600 MHz, d6-benzene at 7.16 ppm.
d 6.51, dd, J14,15 = 11.8 Hz, J13,14 = 14.6 Hz, 1H, H14; d 6.40, dd, J12,13 = 10.9 Hz, J11,12 = 15.2 Hz, 1H, H12; d 6.14, dd, J12,13 = 11.1 Hz, J13,14 = 14.8 Hz, 1H, H13; d 6.03, t, J14,15 = J15,16 = 11.0 Hz, 1H, H15; d 5.42, m, 1H, H16; d 5.39, m, 1H, H11; d 3.53, s, 3H, OCH3; d 3.02, br d, J10,11 = 7.9 Hz, J9,10 ~1 Hz, 1H, H10; d 2.67, br t, J8,9 = 4.6 Hz, J9,10 ~1 Hz, 1H, H9; d 2.10, t, J = 7.4 Hz, 2H, H2; d 2.06, q, J = 7.6, 2H, H17; d 1.53, q, 2H, H3, d 1.35-1.43, m, 2H, H8; d 1.28-1.35, m, 1H, H7a; d 1.21-1.28, m, 1H, H7b; d 1.06-1.16, m, 6H, H4, H5, H6; d 0.88, t, J17,18 = 7.6, 3H, H18.
http://www.pnas.org/content/104/48/18941/F3.expansion.html
http://www.pnas.org/content/suppl/2007/12/18/0707148104.DC1#F5
Configuration of the bicyclobutane ring of product 1. The NOESY NMR spectrum of product 1
was recorded in d6-benzene at 600 MHz. The partial chemical structure
illustrates the through-space couplings of the single
protons at H13 and H16, the two ends of
the bicyclobutyl ring. The 13-exo,16-endo configuration of the ring can
be deduced
from the observation that the coupling of
H13 to H14/15 is weak, whereas H16-H14/15 is strong, and that the
coupling of H13
to H17 is strong, whereas there is no
detectable NOE between H12 and H16 (SI Fig. 9).
Shown here are the NMR chemical shift and multiplicities data on product 1.
NMR data on C18.3w3 Anabaena product 1 methyl ester, 600 MHz, d6-benzene at 7.16 ppm.
d 5.39, dd, J11,12 = 15.5 Hz, J12,13 = 8.2 Hz, 1H, H12; d 5.34, dd, J10,11 = 7.1 Hz, J11,12 = 15.4 Hz, 1H, H11; d3.36, s, 3H, OCH3; d 2.94, dd, J9,10 = 2.0 Hz, J10,11 = 7.1 Hz, 1H, H10; d 2.64, dt, J8,9 = 5.6 Hz, J9,10 = 2.0 Hz, 1H, H9; d 2.36, d, J12,13 = 8.2 Hz, 1H, H13; d 2.10, t, J2,3 = 7.4 Hz, 2H, H2; d 1.91, m, J = 3.6 Hz, 1H, H16; d 1.53, q, J = 7.4 Hz, 2H, H3; d 1.37, m, 2H, H8; d 1.31 and 1.34, two dd, J(14,15) »11 Hz, J(14,16) »3 Hz, 2H, H14, H15†; d 1.29-1.35, m, H7a; d 1.20-1.28, m, 1H, H7b; d 1.16, q, J16,17 = J17,18 = 7.3 Hz, 2H, H17; d 1.06-1.16, m, 6H, H4, H5, H6; d 0.87, t, J17,18 = 7.4 Hz, 3H, H18.
†The two dd signals represent H14 and H15, although they are not individually assigned.
Data Set 2
Shown here are the NMR chemical shift and multiplicities data on product 2.
1H-NMR on product 2 methyl ester, the C18.3w3 LTA-type epoxide, 9R,10R-trans-epoxyoctadeca-11E,13E,15Z-trienoic acid. 600 MHz, d6-benzene at 7.16 ppm.
d 6.51, dd, J14,15 = 11.8 Hz, J13,14 = 14.6 Hz, 1H, H14; d 6.40, dd, J12,13 = 10.9 Hz, J11,12 = 15.2 Hz, 1H, H12; d 6.14, dd, J12,13 = 11.1 Hz, J13,14 = 14.8 Hz, 1H, H13; d 6.03, t, J14,15 = J15,16 = 11.0 Hz, 1H, H15; d 5.42, m, 1H, H16; d 5.39, m, 1H, H11; d 3.53, s, 3H, OCH3; d 3.02, br d, J10,11 = 7.9 Hz, J9,10 ~1 Hz, 1H, H10; d 2.67, br t, J8,9 = 4.6 Hz, J9,10 ~1 Hz, 1H, H9; d 2.10, t, J = 7.4 Hz, 2H, H2; d 2.06, q, J = 7.6, 2H, H17; d 1.53, q, 2H, H3, d 1.35-1.43, m, 2H, H8; d 1.28-1.35, m, 1H, H7a; d 1.21-1.28, m, 1H, H7b; d 1.06-1.16, m, 6H, H4, H5, H6; d 0.88, t, J17,18 = 7.6, 3H, H18.
http://www.pnas.org/content/104/48/18941/F3.expansion.html
http://www.pnas.org/content/suppl/2007/12/18/0707148104.DC1#F5
No comments:
Post a Comment